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Abstract 

The standard magnetic model in the current CALPHAD modeling is based on the Inden-

Hillert-Jarl model and an empirical constraint due to Weiss and Tauer that can be used to 

connect ferromagnetism and antiferromagnetism. In this work, we demonstrate that many 

artifacts can be produced by using the current approach when modeling systems with 

elements of different forms of magnetism. We then propose several simple measures to 

improve the standard magnetic model so that a physically and numerically correct and 

more accurate description for the Gibbs energy of magnetic ordering can be obtained in 

normal situations. Especially, we have assumed that each magnetic phase always 

possesses both ferromagnetic and antiferromagnetic states, with one of them stable and 

the other non-stable. The concept of 'effective magnetic moment' has also been 

introduced as a measure of the maximum magnetic entropy. A case study on the Al-Cr-Fe 

system has been performed at 0 K showing the importance of reasonable description of 

the magnetic phase diagrams. It has been stressed that the extended magnetic model in 

this work can be further employed for bridging atomistic and phenomenological 
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modeling for multi-scale simulation. 
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1. Introduction  

Magnetism is a physical phenomenon of fundamental importance in many applications. 

Recent years have witnessed unprecedented interest in the study of magnetic phenomena 

and their effects by both physicists and material scientists [1-6]. The impact of 

magnetism upon metallurgy was firstly discussed by Zener in 1955 [7]. The significance 

of evaluating the magnetic contribution to the Gibbs energy was strengthened in Zener's 

work by proposing a simple model for alloy theory, in which the free energy curve for 

pure iron was rigidly shifted in order to represent the alloying effects on the Curie 

temperature. At the same time, Tauer and Weiss [8] developed a method to evaluate the 

specific heats of ferromagnetic (FM) and antiferromagnetic (AFM) states, by separating 

the magnetic contribution from vibrational and electronic contributions. Following the 

idea of Tauer and Weiss [8], a magnetic model for thermodynamic modeling was 

proposed by Inden [9] in 1976, and later revised slightly by Hillert and Jarl [10]  in order 

for the model to be easily implemented in computer programs, such as Thermo-Calc, for 

thermodynamic calculations.  In 1982, Hertzman and Sundman [11] applied the model to 

describe the Fe-Cr system where Fe and Cr exhibit different forms of magnetism, i.e. 

ferromagnetism and antiferromagnetism, respectively in the bcc structure. They followed 

Weiss and Tauer’s proposal [12] and scaled the Néel temperatures and magnetic moments 

with an AFM factor, which is -3 for the fcc phase and -1 for the bcc phase. In this way, 

composition dependences of both the Curie and Néel temperatures over the whole 

composition range could be described by using only one smooth curve and the transition 

from FM to AFM ordering occurs when the critical temperature curve passes through 

zero. For convenience, the same factor has also been used for the composition 
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dependence of the mean magnetic moment. Although there are some other suggestions 

[13] based on Inden's idea, the one given by Hillert and Jarl [10] for FM ordering 

transition and its further extension by introducing an antiferromagnetism factor for AFM 

ordering transition [12] are generally accepted as the standard magnetic model in  the 

CALPHAD (CALculation of PHAse Diagrams) community and have been adopted in all 

available software packages. This model has been widely used for evaluating the 

magnetic ordering energy in thermodynamic models, and also for predicting the magnetic 

influence on diffusivities used in kinetic simulations.  

The importance of reasonably describing the magnetic ordering energy and its 

influence on diffusion cannot be underestimated.  For example, in the work by Xiong et 

al. [14], it was demonstrated the model-predicted T0 curve (the temperatures curve 

showing the same value of the Gibbs energy for both fcc and bcc phases) in the previous 

thermodynamic descriptions can be improved significantly by just improving the 

description of the magnetic phase diagram in the Fe-Ni system. As to the impact on 

diffusion-controlled phase transformation kinetics, the diffusivity of components in the 

magnetic system will be affected significantly at low temperatures where magnetism 

plays a critical role because the magnetic enthalpy alters the activation energy for 

diffusion. When coupling the phase field modeling with CALPHAD thermodynamics and 

kinetics, as discussed in the work by Xiong et al. [15] using the case of Fe-Cr, inadequate 

description of magnetic ordering energy makes it impossible to accurately simulate 

microstructural evolution in magnetic materials on a real time scale.  

One of the major advantages of the CALPHAD approach is its applicability to multi-

component systems. Numerous computational thermodynamic studies have been 
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performed in the last three decades, but unfortunately not much attention has been paid to 

the magnetic phase diagrams in the thermodynamic modeling of magnetically ordering 

systems. As a result, considerable amount of CALPHAD-type descriptions for magnetic 

phase diagrams are rudimentary. This is probably due to three factors. Firstly, most 

magnetic transitions occur at low temperatures, which were beyond the interest of 

CALPHAD in the early years. The lack of accurate thermodynamic description below 

300 K has generated a gulf between atomistic modeling, e.g. ab initio studies and 

CALPHAD modeling. A good reflection of this is the absence of lattice stability below 

300 K. Secondly, due to the complexity of magnetism, a comprehensive review on the 

measurement of magnetic properties sometimes calls for more efforts than merely 

evaluating the thermodynamic properties for the system under consideration. Thirdly, the 

ultimate goal of thermodynamic modeling is normally about phase equilibria, phase 

diagrams, and thermodynamic properties, which are mostly measured without any link to 

the measurement of magnetic properties. 

Recently, in the work on the Fe-Cr and Fe-Ni systems [14, 16, 17], it was found that 

the magnetic phase diagrams have been poorly evaluated even for these fundamental 

binaries with extreme importance in practical applications. Moreover, it has been reported 

in the work by Xiong et al. [14] that a difficulty arises when trying to describe the 

magnetic transition temperature for both antiferromagnetism and ferromagnetism of the 

fcc phase in the Fe-Ni system with only one Redlich-Kister (R-K) polynomial [18] 

assisted by the AFM factor. In order to avoid such a difficulty, and have a remedy for the 

situation, we intend in this work to modify the standard magnetic model that is currently 

used in the CALPHAD community and establish a more accurate description of the 
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magnetic ordering energy in multicomponent systems exhibiting several different forms 

of magnetism.  

The IHJ model and the introduction of the AFM factor in the CALPHAD approach 

will be firstly described in Section 2 in order to compare with the improvements made in 

this work shown in Section 3. The various issues and remaining problems will be further 

discussed in Section 4 and 5.  

2. The IHJ model and the AFM factor 

The IHJ model [9, 10] has been available since 1978, and the original work only 

discussed the transition in FM states but not AFM states. The IHJ model was later 

adopted in the thermodynamic evaluation of the Fe-Cr system by Hertzman and Sundman 

[11], who also introduced the AFM factor suggested by Weiss and Tauer [12] in order to 

describe the AFM ordering transitions. In this section, we will firstly elucidate the way to 

apply the IHJ model in the current CALPHAD method, and then make some necessary 

comments. 

2.1. The original IHJ model 

The magnetic model proposed by Inden [9] is based on two practical ideas. Firstly, the 

magnetic contribution to heat capacity (CP) was expressed in an analytic form as follows: 
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where τ is CT T , TC the Curie temperature, LRO

PC and SRO

PC correspond to the magnetic 

contribution to the heat capacity in the FM and paramagnetic (PM) states. LROK and 
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SROK are two constants for FM and PM states. R is the gas constant. 

Secondly, based on the work of Tauer and Weiss [8], Inden suggested to calculate the 

maximum magnetic entropy of an element undergoing the FM disordering transition 

using a function of mean magnetic moment (  ) [9]: 

  max ln 1magnS R     (2) 

Based on the above ideas, Hillert and Jarl [10] found that it is sufficient to use a truncated 

Taylor expansion form of Eq. (1): 
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where m = 3 and n = 5. Therefore, the final expression of the Gibbs energy for magnetic 

ordering  becomes: 

    ln 1magn

mG RT g      (4) 

  

1 3 9 15

5 15 25

1 79 474 1
1 1 ,  <1

140 497 6 135 600

1 1 1 1
,                    1

10 315 1500

A p p
g

A

   




   



  

    
        

     
 

    
 

 (5) 

 
518 11692 1

1
1125 15975

A
p

 
   

 
 (6) 

where p is called the structure factor, which is the ratio of magnetic enthalpy in the PM 

state to the total magnetic enthalpy. For the bcc structure, the accepted value is: p = 0.4, 

while for fcc and hcp crystals, p = 0.28 [9]. Normally, p can be used to determine the 
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shape of the λ-peak in the Cp curve due to the magnetic transition.  

One can readily derive the above expression for the Gibbs energy of magnetic ordering 

using a basic thermodynamic relation: 
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where T1 is the magnetic transition temperature for integration. It is noteworthy that the 

fully disordered magnetic state, i.e. the ideal paramagnetic state, at the infinitely high 

temperature has been chosen as the reference state in this expression. As explained in the 

work of Inden [19], an artificial miscibility gap could occur in some magnetic systems 

showing strong magnetism but containing  components showing weak or even no 

magnetic ordering, e.g. in the bcc Fe-Al case, if the ordered magnetic state at low 

temperature is considered as the reference state. 

2.2. Mean magnetic moment and local magnetic moment 

An important parameter in the above model is the local magnetic moment of the atoms 

(β), which determines the value of the maximum magnetic entropy and controls the 

intensity of the λ-peak in CP curve at the magnetic transition temperature. It has been 

suggested by Inden [9] the expression using the mean magnetic moment for the 

maximum magnetic entropy in Eq.(2) approximates the more general expression for the 

FM ordering: 

  max ln 1magn

i i

i

S R x    (8) 

which should be used if the local magnetic moments of the component atoms i are known. 
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Apparently, the difference between the exact and approximate value of 
max

magnS  depends 

on their inputs, i.e. the local magnetic moments and the mean magnetic moment. We can 

get a sense of the difference by taking an example, the bcc Fe-Ni system from a previous 

work by Xiong et al. [14]. As shown in Fig. 1(a), the difference between exact maximum 

magnetic entropy and approximate one shows a maximum at c.a. 50 at.% Ni. 

It is worth mentioning that both local magnetic moment and mean magnetic moment 

can be determined by using neutron magnetic scattering and some other techniques [20]. 

Moreover, mean magnetic moment for FM materials can also be determined via 

measurement of saturation magnetization [14, 21]. Despite this, in current CALPHAD 

modeling, only mean magnetic moment is used as the input, even though in some cases 

the local magnetic moment can be well determined via experiments or ab initio 

calculations [14, 22-24].  

In this work, a thermodynamically effective magnetic moment is introduced and 

suggested to be used in CALPHAD modeling if local magnetic moment is available. In 

short, it is called "effective magnetic moment" and denoted β*, which satisfies the 

following relation.  

    *

max ln 1 ln 1magn

i i

i

S R R x         (9) 

It is obvious that the effective magnetic moment β* can be calculated from the local 

magnetic moments:

 

  * 1 1
ix

i
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The obtained effective magnetic moment can then be described by using a single R-K 

polynomial. The differences between β* and   for the bcc Fe-Ni alloys are visible in Fig. 
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1(b). It should be emphasized that the effective magnetic moment β* and local magnetic 

moments βi will generate the same value for the maximum magnetic entropy, while 

 will normally give a different value as an approximation. 

2.3. The AFM factor and possible resulted artifacts 

It should be noted that the IHJ model was introduced to describe only the FM ordering 

in the work by Inden [9] and Hillert and Jarl [10]. None of them discussed the AFM state 

or a system with composition regions of different magnetic states. The task was left to 

Hertzman and Sundman [11] when they investigated the Fe-Cr system.  

Hertzman and Sundman [11] have successfully applied the IHJ model for both FM and 

AFM states in the Fe-Cr system, where Fe and Cr exhibit ferromagnetism and 

antiferromagnetism, respectively, in the bcc structure. In order to have a single expression 

for the composition dependences of both Curie and Néel temperatures, they adopted 

Weiss and Tauer’s proposal [12] that the parameters for AFM ordering can be treated as 

negative values divided by a factor, which is -3 for the fcc structure and -1 for the bcc 

structure. The whole scheme is illustrated in Fig. 2(a) and (b). It was based on Weiss and 

Tauer’s observation on quite a number of binary systems and worked well for Hertzman 

and Sundman’s purpose [11]. It should be mentioned that the same AFM factors have also 

been adopted by them for describing the mean magnetic moment in the Fe-Cr system. 

Ever since then, this treatment has become an important part of the standard magnetic 

model used in the CALPHAD community and has been generalized without any further 

examination and questioning for all different kinds of systems. 

Now let’s have a look of a case where an element exhibiting no magnetic ordering is 

involved, see Fig. 2(c) and (d), we found immediately that an artificial Néel temperature 



- 11 - 

curve is resulted on the side of component A showing weak magnetic behavior. It is easy 

to envisage that if the composition at which the type of magnetism changes at 0 K in Fig. 

2(c) or (d) is closer to the pure component showing FM ordering, the artificial Néel 

temperatures at the side of component A will be more pronounced, and will thus result in 

significant artificial AFM contributions to the Gibbs energy in this artificial AFM 

composition range. A second case is shown in Fig. 3(a) to demonstrate that it is not viable 

to use a single R-K polynomial to describe different magnetic regions. A practical study 

for this problem is discussed in the work on the Fe-Ni system by Xiong et al. [14]. In that 

case, the Néel temperature curve for the fcc phase close to pure Fe will have a maxima. 

In addition, the composition at which the form of magnetism changes  at 0 K could not be 

fitted to 25 at.% Ni, which has been predicted by ab initio calculations [25]. Forcing this 

composition will lead to an artificial maximum Néel temperature of more than 298 K on 

the Fe-rich side. The situation may be even worse if the change from AFM to FM at 0 K 

is not continuous as shown in Fig. 3(b). In this case, there is no chance to be able to 

model the PM region at 0 K with a single critical temperature curve by using the AFM 

factor. 

As we mentioned before, the mean magnetic moment has been used as an input 

parameter of the IHJ model in the current CALPHAD modeling and its composition 

dependence was described in a similar way as that for the critical temperature with the 

same AFM factor for an alloy phase of different types of magnetism in different 

composition regions. This approach could lead to a conceptual error, which can be 

demonstrated by using Fig. 2(c) and (d) as an example and considering the y-axis as  , 

instead of magnetic transition temperature. In this case, undesired non-zero mean 
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magnetic moments will be obtained for alloys in the PM region with vanished global 

magnetization.  

3. A revised magnetic model 

In order to eliminate the artifacts revealed above and describe the magnetic Gibbs 

energy more accurately, herewith we propose some modifications in the standard 

magnetic model used in the current CALPHAD modeling 

3.1. Effective magnetic moment 

We have suggested in the above section that, although the difference between using the 

effective and mean magnetic moment may not be so large in many cases with FM 

ordering transition, the former one should be preferred if experimental information on the 

local magnetic moments is available. In order to represent the maximum magnetic 

entropy more exactly, one should always consider the effective magnetic moment rather 

than the mean magnetic moment if possible. It is worth mentioning that the effective 

magnetic moment is a representation of the local magnetic moment, which can 

sometimes be readily calculated by using the ab initio method. Therefore, the ab initio 

calculations become an important tool for supplying information on the effective 

magnetic moment if the experimental data is not available.  

By using the effective magnetic moment as input to the IHJ model, we can not only 

obtain more exact maximum magnetic entropy, but also avoid the conceptual error we 

found with the standard approach in the above section. Now we shall illustrate our 

solution by using a hypothetical system shown in Fig. 4 with an AFM-FM transition at 0 

K, which is an archetype for the fcc Fe-Ni alloy [14].  By using the approach in the 

current CALPHAD modeling, the mean magnetic moment will be modeled as the short-
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dashed line (see Fig. 4(b)). Besides, in order to describe the mean magnetic moment 

using a single R-K polynomial with the help of the AFM factor, a line shown as a dashed 

curve, i.e. non-zero values will appear in the AFM region, which is physically incorrect 

since the global magnetization in an ideal AFM state will vanish. However, if the local 

magnetic moments are available, one could instead use the thermodynamically effective 

magnetic moment which will give the solid line instead in Fig. 4(b).  

It is noteworthy that the composition at which the mean magnetic moment curve pass 

through 0 K could be used to identify the FM/AFM or FM/PM transition point at 0 K, 

and the point should have the same composition as the one for the magnetic transition 

temperature curve at 0 K. This may be useful when experimentally low magnetic 

transition temperature is hard to determine and the experimental mean magnetic moment 

is not available. In this situation, one could try to compute the mean magnetic moment by 

using ab initio calculations and identify the critical composition where the type of 

magnetism changes at ground state. 

In fact, the effective magnetic moment in the present magnetic model should be 

ultimately served for accurately evaluating the magnetic ordering energy. In the 

CALPHAD-type description of pure elements, the effective magnetic moment may needs 

to adjust in a way to reproduce the experimental heat capacity satisfactorily. For instance, 

in the study of bcc Cr by Andersson [26], an artificial value of 0.008 μB is adopted for the 

magnetic moment, which was called thermodynamically magnetic moment, since the 

magnetic moment cannot be defined precisely in the case of Cr with spin density wave 

effects, and the measured value for magnetic moment will generate more pronounced 

peak in the Cp curve. Another interesting example can be found in fcc Ni. The 
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experimental study shows a value of 0.62 μB for the magnetic moment of pure Ni, but the 

adopted value in the CALPHAD database is 0.52 μB [27], which is also the result of 

fitting the λ-shape peak of the Cp curve precisely according to the experimental data.  

3.2. Different magnetic states of a phase 

We propose to introduce both FM and AFM states for each phase exhibiting FM or 

AFM in reality, which means that the hidden state is non-stable. For each magnetic state, 

no matter if it is stable or non-stable, there exists a corresponding magnetic transition 

temperature.  Furthermore, we assume that for each phase there is only one stable 

magnetic state. Therefore, a negative absolute magnetic transition temperature is assigned 

for each phase in its non-stable magnetic state. For convenience, we take the absolute 

value of this magnetic transition temperature the same as that for the stable magnetic state. 

In this way, the composition dependences of the Curie and Néel temperatures will be 

described separately using two different R-K polynomials, and the empirical AFM factor 

applied in the standard magnetic model currently used in CALPHAD community is not 

necessary. As a result, the artifact caused by using one single polynomial with help of the 

AFM factor will disappear. 

Some archetypes of magnetic phase diagrams are illustrated in Fig. 5 by showing the 

way of fitting the magnetic transition temperature using the revised model proposed in 

this work. 

3.3. Gibbs energy of magnetic ordering 

It is natural now to set the magnetic contribution to the total Gibbs energy to zero 

once the magnetic critical temperature becomes negative. It should be noticed that in an 
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earlier work by Chen and Sundman [28] some modifications of the expression for the 

magnetic heat capacity was done in order to reproduce more exactly the well-determined 

experimental enthalpy of the phase transformation between bcc and fcc for pure Fe. The 

polynomial shown in Eq. (3) is further added with one more expansion term as shown 

below. 
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The power exponent, n, shown in the above equation was adjusted to 7, while m is kept to 

3. Therefore, LROK and SROK have been re-optimized and yields new values for the 

structural factor, p = 0.37 for the bcc crystal, and p = 0.25 for the non-bcc phases. It has 

been showed that the slight change of the p value will not bring any strong effects to the 

fitting of heat capacity for pure Co and Ni [28]. 

Accordingly, in this work, the basic function of the Gibbs energy of magnetic ordering 

has been adopted as: 
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It should be emphasized that the reference state of the magnetic ordering effects is the 
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disordered state at the infinitely high temperature. As a consequence, at 0 K the magnetic 

entropy does not go to zero, but  *ln 1R   , i.e., minus the absolute value of the 

maximum magnetic entropy. Therefore, in order to enforce the third law of 

thermodynamics for the magnetic state at 0 K, the nonmagnetic entropy is shifted by 

 *ln 1R    in order to compensate for the magnetic entropy at 0 K.  

4. Application of the improved model in multicomponent systems 

The improved magnetic model can be further applied to multicomponent systems. 

Sometimes one may need to concern the extrapolation into the ternary phase region as the 

case demonstrated in Fig. 6. Comparing with the standard model currently used in the 

CALPHAD community, the improved model outlined above is able to describe more 

cases regarding ferromagnetism, antiferromagnetism and non-magnetism without 

producing any artificial magnetic contributions to the total energy. According to the 

illustration in Fig. 6, the crossover between the Curie and Néel temperature curves should 

be lower than 0 K, which means there is no region for ferromagnetism and 

antiferromagnetism coexisting above 0 K. It should be noted that in the magnetic phase 

diagram, like the A-B-D system, shown in Fig. 6, the fitting for the effective magnetic 

moment may show some parts with negative values (see the corner of component B in 

Fig. 6(b)). It is thus assumed that such a range will have no contribution to the magnetic 

entropy.  

A case study on the bcc phase of the Al-Cr-Fe magnetic phase diagram is performed in 

this work and its results are presented in Figs. 7-9. Firstly, according to the experimental 

data [29-39], the magnetic phase diagram has been constructed by plotting the magnetic 

transition temperatures and magnetic moments as shown in Figs. 7 and 8, respectively.  It 
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should be noted that the ternary region is the simple extrapolation from the binaries, 

without introducing any ternary interaction parameters, due to lack of experimental data. 

From Fig. 7, it follows that none of the magnetic temperature curves (see red dashed lines) 

have been described correctly in the reported assessments [24, 40, 41]. By using the 

improved magnetic model, the binaries, Al-Fe and Al-Cr, can be described satisfactorily 

without generating any artificial Néel temperatures at the non-magnetic sides (see blue 

lines). It is easy to envision that the magnetic contributions calculated with the model in 

this work will be significantly different from those obtained in the previous assessments 

[24, 40, 41]. By extrapolation from the previous descriptions of the binaries, no PM 

region at 0 K exists except for pure Al, and AFM regime will dominate a much wider 

range compared with the one from this work.  

In Fig. 9, the magnetic ordering energy at ground state has been plotted by using the 

standard CALPHAD magnetic model and the improved magnetic model in this work. 

The distribution of the magnetic ordering energy in both models shown in Fig. 9(a) and 

(b) are distinctly different. It is noteworthy that even though the energy difference is not 

large in the binary cases, the energy difference due to the description of magnetic phase 

diagram will be more pronounced when extrapolating into the ternary region. 

5. Discussions 

5.1. Magnetism in pure elements 

At present, we feel the need to emphasize the importance of the description of the 

magnetism in pure elements, since the reliability of the description for unary will 

eventually affect the thermodynamic description of higher order systems. It is likely that 

the magnetic properties of some unary systems need to be revisited. For instance, since 
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the fcc structure is unstable for pure Cr, it may need further affirmation for adopting a 

Néel temperature of 369.667 K and a magnetic moment of 0.82 μB/atom as done in the 

SGTE database [27], which was a result by extrapolating from the other two binary Fe-Ni 

and Cr-Ni systems when modeling the Fe-Cr-Co-Ni system by Chin et al. [11, 42]. 

Another example that is more convincing is the magnetic properties of pure Ni. As 

reported by Tian et al. [3], pure bcc Ni is experimentally stable in the FM state with a 

Curie temperature of 456 K and a magnetic moment of 0.52 ± 0.08 μB/atom.  These 

values differ quite much from the adopted values in the SGTE database (575 K,  0.85 

μB/atom). 

It should be mentioned that some magnetic properties in amorphous phases are also 

available from experiments. A comprehensive study on the lattice stability of Fe by Chen 

and Sundman [28] has summarized such information for some Fe-based binaries in order 

to achieve a reasonable value for magnetic properties of amorphous Fe by extrapolation. 

5.2. Description of magnetism for compounds 

There are countless numbers of compounds exhibiting magnetic ordering transformations. 

However, in thermodynamic modeling, the magnetic transitions in compounds are often 

not paid enough attention. For example, in the case of Fe-Cr, the σ phase has been 

determined to show ferromagnetism at c.a. 50 K [43, 44], but this had been neglected 

when the system was modeled. Another issue similar to the description of many 

intermetallic phases is the solution phases modeled by using the sublattice model. Such 

cases have been demonstrated in the work of Guillermet [45] on the Co-C system, and 

can be further applied to the intermetallic phases. Within the compound energy formalism 

[46], one would need to determine the magnetic properties for end-members at first. 
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5.3. Limits of the improved magnetic model 

Due to the complexity of magnetism, one may find some phenomena which could not 

be adequately represented by using even the improved magnetic model proposed in this 

work. Specifically, for a phase with fixed composition, the present model does not allow 

the type of magnetism that changes forth and back as shown in Fig. 10 (the green shaded 

part in the vicinity of 50 at.% B). Moreover, AFM and FM ordering are not allowed to 

coexist for the same structure. For example, the spinel phase Co3O4 has AFM at about 30 

K and FM at about 1200 K [23]. Normally, as a compromise, the transition related to FM 

states in this case will be described, whereas the AFM states will not be considered 

because the transition temperature is very low, and thus the magnetic contribution to the 

Gibbs energy is less than FM ordering transition. 

A similar intriguing case can be found in the magnetic phase diagram of the Fe-Rh 

system. A preliminary assessment has been carried out by Ohnuma et al. [47], in which 

the magnetic phase diagram of the ordered bcc alloys has been simplified by comparing 

the determined magnetic phase diagram [48] as reconstructed in Fig. 11. Certainly, the 

magnetic transition of the bcc alloys along the temperature axis from AFM to PM with 

FM in between is beyond the capability of the present magnetic model. 

5.4. Temperature and pressure dependence of magnetic transition 

It is noteworthy that the present magnetic model in the thermodynamic modeling has 

not included any temperature or pressure dependence of magnetization. In principle, the 

magnetic moments will show both temperature and pressure dependence, while the 

magnetic transition temperature has pressure dependence only. Further consideration in 

the related topics will significantly broaden the application of the present magnetic model. 
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Therefore, it would be practically useful to introduce temperature dependence for the 

magnetic moment, which may give more reasonable description of the magnetic entropy, 

supposing the relation shown in Eq. (10) will still hold at higher temperatures.  

5.5. Low temperature CALPHAD 

The present work shows the importance of describing magnetic phase diagram in 

phase equilibria studies. It is obvious that thermodynamics at low temperatures are 

strongly related to magnetism in the magnetic systems. Due to considerable needs of 

practical applications at low temperatures of computational thermodynamic databases, 

nowadays, the concept of low-temperature CALPHAD is in its infancy, which 

emphasizes the accurate description of the low-temperature thermodynamics by 

integrating ab initio calculations, new generation of lattice stability [49] and experiments. 

These integrated methods should be considered as the tools for the inputs in the low-

temperature CALPHAD method.  Apparently, the magnetic effects should be taken into 

account properly in the modeling at low temperatures. By improving the standard 

magnetic model that is currently used in CALPHAD modeling, we expect to provide a 

possible link to bridge different methods in the field of low-temperature CALPHAD.  

6. Summary 

In this work, we discussed problems existing in the standard magnetic model 

currently used in the CALPHAD community when modeling the magnetic alloy systems. 

It is suggested that the magnetic phase diagram should be studied carefully in order to 

model the thermodynamic and kinetic data correctly. It is expected that the ab initio and 

CALPHAD methods could be integrated by using the new generation of the lattice 

stability and the present magnetic model. 
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This work presents an improved magnetic model for the CALPHAD method with a 

hope that our simple modifications may draw more attention to the description of 

magnetic ordering and mitigate the challenges of describing magnetic phase diagrams at 

the moment. Apparently, the further development of the CALPHAD method calls for 

more robust and sophisticated magnetic models. 
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Figure captions 

Fig. 1. Different types of (a) magnetic moment and (b) magnetic entropy in the Fe-Ni 

system. 

Fig. 2. Illustration of describing magnetic phase diagram of a hypothetical A-B system 

by using the AFM factor, the left column sub-figures (a) and (c) are the case 

with bcc structure, while the right ones (b) and (d) are with non-bcc structure.  

Fig. 3. Magnetic phase diagrams of a hypothetical A-B system with the bcc structure. 

Symbols stand for the imaginary experimental data. 

Fig. 4. The upper figure (a) is the magnetic phase diagram of a hypothetical A-B 

system, while the lower figure (b) is the diagram of magnetic moment at 0 K, 

in which the short dashed line is the mean magnetic moment, long dashed line 

is the artificial mean magnetic moment resulted by using the AFM factor, and 

the solid line is the effective magnetic moment.  

Fig. 5 Illustration of different magnetic phase diagrams described using the improved 

magnetic model. The curves indicating the negative absolute temperatures are 

plotted as the dashed lines. 

Fig. 6 (Online color) Hypothetical 3D magnetic phase diagram for a ternary A-B-D 

system according to the improved magnetic model in this work. 

Fig. 7.  (Online color) Magnetic transition temperature for the Al-Fe, Al-Cr and Cr-Fe 

systems. Experimental data for the magnetic transition temperatures in the bcc 

structure are from the work in Refs. [29-34]. Red dashed lines are the 

calculated magnetic transition temperatures according to the previous 

assessments [24, 40, 41], while the blue ones represent the magnetic transition 

temperatures calculated in this work using the improved magnetic model. 
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Fig. 8. (Online color) Magnetic moment for the Al-Cr-Fe bcc alloys at 0 K. The 

experiment data are from the work in Refs.[30-32, 35-39] . Blue solid symbols 

denote the effective magnetic moment. Red open symbols indicate the mean 

magnetic moment. Black solid symbols are for the local spin magnetic 

moments of Fe atoms, while the shadowed symbols are for the local spin 

magnetic moments of Cr atoms which show the value added by 2.0. Black 

solid and dashed lines are used to guide the eyes. Red dashed lines are the 

calculated mean magnetic moment according to the previous assessments [24, 

40, 41], while the blue lines represent the effective magnetic moment 

calculated in this work using the improved magnetic model. 

Fig. 9. (Online color) (a) Calculated magnetic ordering energy according to the 

simplified magnetic model implemented in current standard CALPHAD 

approach. (b) Calculated magnetic ordering energy according to the improved 

magnetic model in this work. (c) The difference between magnetic ordering 

energies calculated from the models before and after modification. (d) The 

three dimensional view of the results in (c). 

Fig. 10. (Online color) A possible magnetic phase diagram of an A-B system for a 

certain structure. The red chained line is the Curie temperature. Green and blue 

shaded parts compose the FM region.  

Fig. 11. Magnetic phase diagram of the Fe-Rh ordered bcc alloys according to the work 

by Vinokurova et al.[48] Phase transition temperatures were determined from 

different measurements according to magnetization, susceptibility and residual 

magnetization. Dashed lines are used for guiding the eyes. 



Highlights 

 The standard magnetic model in the state-of-the-art CALPHAD approach is 

improved.  

 The concept of effective magnetic moment is introduced as a measure of 

maximum magnetic entropy. 

 The low temperature CALPHAD method calls for meticulous investigation of 

the magnetic phase diagrams. 

 A case study on the Al-Cr-Fe system demonstrates the importance of careful 

consideration of magnetic contribution to the Gibbs energy. 
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Figure 10
Click here to download high resolution image

http://ees.elsevier.com/calpha/download.aspx?id=45736&guid=85ad68fd-9b2d-488b-8e67-74e4febefd15&scheme=1
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FORTRAN90 code for Magnetic energy calculation in AL-CR-FE
Click here to download Online Supplemental Thermodynamics/Kinetics Dataset: ALCRFENewMagneticModel.f90
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