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PREFACE

PREFACE

This volume contains the full papers presented at the XIII International Conference on 
Computational Plasticity (COMPLAS 2015), held in Barcelona on 1-3 September, 2015. The first 
twelve conferences of the series were also held in Barcelona; in April 1987, September 1989, 
April 1992, April 1995, March 1997, September 2000, April 2003, September 2005, September 
2007, September 2009, September 2011 and September 2013. 

The ever increasing rate of development of new engineering materials required to meet 
advanced technological needs poses fresh challenges in the field of constitutive modelling. The 
complex behaviour of such materials demands a closer interaction between numerical analysts 
and material scientists in order to produce thermodynamically consistent models which provide 
a response, while keeping with fundamental micromechanical principles and experimental 
observations. This necessity for collaboration is further highlighted by the continuing remarkable 
developments in computer hardware which makes the numerical simulation of complex 
deformation responses increasingly possible.

The developments that have taken place in these directions are illustrated by the contents of 
the papers included in these Proceedings. A stronger interaction between the phenomenological 
and micromechanical modelling of plasticity behaviour is apparent. The development of efficient 
and accurate computational methods for plasticity problems continues to be challenging goal, 
while it is interesting to note the permanence of element modelling as a research issue. The 
blending of classical FEM with new particle-based and discrete element methods appears as 
one of the more prominent areas of research. Industrial forming processes, geo-mechanics, 
bio-mechanics, steel, concrete and masonry structures form the core of the applications of the 
different numerical methods presented.

This volume includes contributions sent directly from the authors. The editors can not accept 
responsibility for any inaccuracies, comments and opinions contained in the papers.

The organizers would like to thank all authors for submitting their contributions, as well as the 
supporting organizations for their help in making COMPLAS XIII possible.

  Roger Owen      Eugenio Oñate
  Djordje Peric     Michele Chiumenti
  Swansea University    CIMNE
  Swansea, Wales,     Universitat Politècnica de Catalunya
  United Kingdom    Barcelona, Spain
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PLENARY LECTURES

Linking Process, Structure, and Property in Additive Manufacturing 
Applications through Advanced Materials Modelling

Wing Kam Liu*, Puikei Cheng*, Orion L. Kafka*, Wei Xiong†, Zeliang Liu*, Wentao 
Yan*‡, and Jacob Smith*

*Department of Mechanical Engineering
†Department of Materials Science and Engineering

Northwestern University
Evanston, IL 60208-3111, USA
e-mail: w-liu@northwestern.edu

‡Department of Mechanical Engineering
Tsinghua University

Beijing 100084, China

Keywords: Additive Manufacturing, Image-based Plasticity, Anisotropic Microstructure

Abstract: Additive manufacturing (AM) processes have the ability to build complex 
geometries from a wide variety of materials. A popular approach for metal-based AM 
processes involves the deposition of material particles on a substrate followed by fusion of 
those particles together using a high intensity heat source, e.g. a laser or an electron beam, in 
order to fabricate a solid part. These methods are of high priority in engineering research, 
especially in applications for the energy, health, and defense sectors. The primary reasons 
behind the rapid growth in interest for AM include: (1) the ability to create complex geometries 
that are otherwise cost-prohibitive or difficult to manufacture, (2) increased freedom of 
material composition design through the adjustment of the elemental ratios of the composing 
powders, (3) a reduction in wasted materials, and (4) fast, low-volume, production of prototype
and functional parts without the additional tooling and die requirements of conventional 
manufacturing methods. However, the highly localized and intense nature of these processes 
elicits many experimental and computational challenges. These challenges motivate a strong 
need for computational investigation, as does the need to more accurately characterize the 
response of parts built using AM. The present work will discuss these challenges and methods 
for creating multiscale material models that account for the complex phenomena observed in 
additively manufactured products. The linkage between process, structure, and property of 
AM components, e.g., anisotropic plastic behavior combined with anisotropic microstructural 
descriptors afforded through enhanced data compression techniques, will also be discussed. 

1 INTRODUCTION
Additive manufacturing (AM) is a set of processing methods that can be used for 

developing 3D products incrementally in a layer-by-layer fashion. AM for metallic 
components has risen to be one of the major research thrusts in materials science and 
engineering over the past decade. The highest impact of metal-based AM has been felt in areas 
of advanced manufacturing, mechanical engineering, materials science, aerospace 
engineering, and bio-medical engineering. These processes have an impressive potential for 
impact in many government and industry sectors while also having positive societal and 
entrepreneurial effects. Future applications of AM include the possibility for many 
opportunities in coupled process-structure-property-product design. AM is nearly limitless in 
its ability to create complex geometric features, unlike subtractive processes, such that 
topological design and metamaterial design is only constrained by the product functionality 
instead of manufacturability. Unique powder combinations and process parameter flexibility 
yield the possibility for functionally graded materials and localized microstructure/property 
design. Materials design is also a natural consequence of AM using powder metallurgy in 
order to adjust bulk material composition.

Linking process, structure, and property in additive manufacturing applications through advanced materials 
modeling
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While processes falling under the umbrella of metal-based AM have created a foundation 
which has the potential to revolutionize advanced manufacturing and design, as-built AM 
materials are not well understood and the relationship between the AM process parameters 
and the resulting structural properties remain unknown. The present work provides a 
comprehensive view of AM for alloy powder fusion from the standpoints of materials science 
and engineering with applications of advanced material modeling used to determine process-
structure-property relations. A brief explanation of the various AM processes are given in 
Section 2 followed by experimental materials characterization in Section 3. Microstructure 
descriptor data compression techniques are discussed in Section 4. The current approaches 
taken by the authors in 3D image-based constitutive modeling based on 3D microstructure 
reconstruction of microstructure defects in as-built AM alloys are demonstrated in Section 5.
Methods for new advanced model development are described in Section 6 followed by 
concluding remarks in Section 7.

2 METAL-BASED AM PROCESSES
There are two primary components that can be used to differentiate between metal-based 

AM fusion processes: (1) powder accumulation and (2) energy input. Accumulation is the 
method of placing the powder particles in front of the energy input for subsequent fusion while 
the method of energy input is the physical process that is used to transfer energy into the 
particles in order to cause a phase change. The chosen combination of these components can 
drastically affect material performance. 

2.1 Accumulation Methods
The primary methods for accumulation of powder material in front of the energy source 

include direct deposition, e.g., Laser Engineered Net Shaping (LENS), an active process, and 
powder-bedding, e.g., Selective Laser Melting (SLM) and Electron Beam Melting (EBM), a 
passive process. Direct deposition simply means that a spray system is utilized in order to
direct the powder material into the focal point of the energy source. This method is excellent 
for manufacturing free-form structures and for component repair. Direct deposition typically 
has a low amount of wasted powder because the deposition is local. This method also requires 
3D control of the tooling used for energy input and powder spray. Powder-bedding is the 
process of spreading a thin layer of powder which is selectively melted to create contour of 
the desired geometry. Successive layers will accumulate until the final product is formed. This 
method is not as versatile in terms of controllability for applications such as component repair 
because only 2D control is necessary (the powder bed is generally moved vertically downward 
after each layer is completed such that the new layer can be deposited).

2.2 Energy Input Methods
Energy inputs used in metal-based AM include lasers and electron beams. Laser-based 

additive manufacturing uses a mobile laser head. The laser beam is capable of emitting photons 
to a focal point located on a substrate and the collision of these photons with the surface 
produce enough heat to change the phase of the substrate. State-of-the-art laser technology 
allows numerous control methods including modulation and pulsing, fine-scale adjustments to 
spot diameter and a wide range of power output settings. Electron-based additive 
manufacturing uses a mobile electron beam in order to create the 2D planar sections but using 
much different physical mechanisms than laser-based methods. The electron beam, as the 
name implies, emits electrons to a focal point on the substrate which penetrate the material;
the kinetic energy of these electrons is transformed into heat upon contact with the substrate.

2.3 Computational Process Modeling for AM Processes
Process modeling for AM can play a pivotal role in understanding the complex mechanics 

of AM processes while predicting the microstructural properties of AM products, the thermal 
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history, and the cooling rates for a given set of process parameters. While the many 
computational complexities related to the multi-physics and multi-scale nature of AM process 
modeling are beyond the scope of the present study, mention should be made of the primary 
differences that arise due to the choice of accumulation and energy input methods. The 
modeling of the energy input is of ample importance in predicting the physical processes that 
take place during AM processing. Because the physics utilized for laser-based and electron 
beam-based processing are different, using a heat source model (energy input model) based 
on the physics of electron beam-based processing [1] for simulation of laser-based processing 
would yield unphysical results. 

The effect of the accumulation method on process modeling is in the material 
microstructure and properties. In direct deposition, the powder is typically melted as soon as 
it hits the substrate, which is in a liquid, solid, or mushy state but is not in powder form, and 
therefore the thermal material properties of the powder is not likely to require consideration 
in the thermal response. Processes that incorporate a powder bed, however, will inherently 
require spatially and temporally varying material properties, based on the scanning strategy,
to account for differences in the properties, e.g., absorptivity and thermal conductivity, of 
powder material as opposed to bulk material.

3 EXPERIMENTAL MATERIALS CHARACTERIZATION
Experimental characterization of AM products is critical in understanding the process-

structure-property relationship. While products created using traditional manufacturing 
processes, e.g., metal forming and cutting, typically provide repeatable and low variations in 
the resulting material characterization, the highly localized and intense nature of AM processes 
result in a grand challenge for uncertainty quantification and management. Rapid changes in 
material properties are observed with only small changes in process parameters due to 
inhomogeneous and anisotropic microstructure. Figure 1 shows a schematic of a Ti-6Al-4V 
block of material to be manufactured using AM with all process parameters fixed with the 
exception of the scanning direction. The block was created and subsequently dissected in order 
to obtain tensile coupons in multiple orientations.

(a) (b)
Figure 1. (a) Toolpath of Ti-6Al-4V build. Y denotes the scanning direction and Z 

denotes the build direction of the laser optic. (b) Schematic of manufactured cube for 
tensile specimen extraction in three orientations [2]

The stress-strain diagrams from the coupon specimens, corresponding to those shown in 
Figure 1, recovered from a block of Ti-6Al-4V alloy manufactured using the LENS process
can be seen in Figure 2. It is clear that the mechanical behavior is strongly anisotropic in the 
elastic properties, plastic yield behavior, hardening behavior, damage evolution, and failure 
strain. These results are dictated completely by the scanning direction (Figure 1. (a)) and the 
distance from the free surface of the object, which causes the directional solidification of the 
microstructure. However, the impact of the microstructure on the anisotropic properties 
observed in Figure 2 are not intuitive and therefore must be investigated.
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(a) (b)

(c) (d)
Figure 2. Uniaxial tensile test stress-strain curves for Ti-6Al-4V specimens for each 

orientation (see Figure 1) from surface to core; orientations (a) A, (b) B, (c) C, and (d) all 
curves [2]

Figure 3 shows features of voids in an as-built alloy at various locations along a tensile 
coupon captured using optical microscopy images. A high level of porosity is clearly visible 
on the surface at all locations with the size of the voids ranging dramatically for each location. 
The highest amount of porosity is, not surprisingly, very close to the fracture surface of the 
tensile specimen while then ends have a lower overall distribution of voids. It can be easily 
understood that this is closely related to the laser energy input and thermal history during 
processing in the specific location of the sample.

(a) (b) (c)
Figure 3. Optical microscopy of voids observed at the (a) bottom, (b) near the fracture 

and at the (c) top [3] (scale bars are 100µm)

Figure 4 shows a close-up view of the fracture surface for the different orientations of tensile 
coupon made from the Ti-6Al-4V cube. The anisotropy in the microstructure can be seen in 
all images. A few notable characteristics of the microstructure at the fracture surface are: (1)
large number of unmelted, or poorly melted, particles causing a high density of inclusions and 
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voids, (2) low success of interlayer bonding, and (3) multi-modal fracture behavior at the 
fracture site. Optimization of the laser processing parameters should be performed to improve 
properties of the current as-built alloys.

(a)

(b)

(c)
Figure 4. Surface porosity and fracture surfaces of Ti-6Al-4V samples after tensile 

testing for orientations (a) A, (b) B and (c) C (orientations are marked in Figure 1) [2].

A summary of the anisotropic nature of the coupon samples can be seen in Table 1. As can 
be seen in the table, the tensile coupon obtained from orientation C shows the highest ductility 
and strength while orientation A has the lowest ductility and strength. This indicates that the 
preferential direction in AM is in the laser scan direction. Comparing this result with the 
microstructural images shown in Figure 4 explains just how much microstructural 
conformation can play a role in the overall material performance of AM products. Unlike with 
traditional manufacturing processes, for which the material properties of the product are 
dictated primarily by the material composition, the material properties of AM materials has a 
dramatic impact from the microstructure. 
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Table 1. Average material properties for each orientation indicated in Figure 1 [2]
Orientation Ultimate 

Tensile 
Strength 
(MPa)

Elongation 
at Fracture

(%)

Modulus of 
Elasticity 

(GPa)

Bulk 
Porosity

(%)

A 650 0.9 116 2.2
B 830 1.7 109 2.7
C 1012 6.0 144 2.0

The primary purpose of this section is to motivate the succeeding discussion on the 
development and implementation of advanced material modeling methods for AM products.
Complex anisotropic material behavior and microstructures in AM products are quite unique 
compared to compositionally similar products developed using other manufacturing methods. 
Elucidating the relationship between processing, microstructure, properties, and product 
performance is perhaps the most important aspect in formulating materials and manufacturing 
design strategies for AM processes. While the tasks charged to the computational community 
are many, the present work indicates that advancements in computational methods for 
materials modeling has become an excellent alternative to pure experimental and data-driven 
methods in understanding process-structure-property relations in AM products.

4 REDUCED ORDER MICROSTRUCTURAL MODELING USING ENHANCED 
DATA COMPRESSION
A continuing challenge in computational modeling of heterogeneous materials is the 

prediction of macroscopic behavior from the material properties of each of its micro-
constituents and the microstructure conformation in both an accurate and efficient manner. 
Particularly, the microstructure of the material plays an important role since microscale 
interactions between constituents has a strong contribution to the macroscale material 
properties. Due to the incremental nature of AM processes, the microstructure in the material 
of a product is quite complex and depends strongly on the processing parameters. On the other 
hand, as a primary interest of AM, specific microstructures, e.g., anisotropic material 
properties and microstructure conformation, can be controlled through careful process design 
strategies. The ability to develop modeling methodologies that can capture the effects of the 
microstructure in heterogeneous materials becomes even more desirable for applications in
AM.

The most accurate method for linking the complex microstructure to the material 
properties is to perform direct numerical simulations (DNS), e.g., Finite Element Method 
(FEM) [4] and Fast Fourier Transform (FFT)-based micromechanics[5]. However, the high 
computational cost prohibits DNS methods from a multi-scale perspective as the microscopic 
simulation will be recomputed at each material point in the macroscopic simulation. Therefore, 
several reduced order methods have been proposed to improve the efficiency of the prediction 
without losing substantial accuracy. The first category of such methods is the micromechanics 
method, such as the Mori-Tanaka method for regularly shaped inclusions [6, 7] and the 
volume-integral based methods for arbitrarily shaped inclusions [8]. Although the 
micromechanics methods have been extensively applied to elastic materials, it is well 
understood that they have difficulties capturing localized nonlinear behavior such as plasticity 
and damage. More general methods have been developed to overcome the limitations of 
traditional micromechanics methods. In particular, intensive research has been focused on two 
approaches: (1) non-uniform transformation field analysis (NTFA) [9, 10] and (2) variants of 
the proper orthogonal decomposition (POD) [11]. For both approaches, the predictions under 
a loading condition are obtained by linear combination of a finite number of RVE modes from 
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previously completed simulations under various load conditions. Due to limitations of the 
linear combination, extra efforts are required when dealing with nonlinear materials. For 
NTFA, specific evolution laws of internal variables have to be assumed for each mode. While 
for POD-based methods, excessive simulations are needed a priori in order to guarantee the 
robustness of the prediction under arbitrary loading conditions.

The proposed approach is developed to efficiently extract information from the 
microstructure through a priori calculation and utilizing the data in an efficient manner. This
is made possible through incorporation of recently developed data compression algorithms, 
which greatly reduce the number of degree-of-freedoms (DOF) in a calculation by finding the 
similarities in the data set. Based on the data compression and micromechanics-based 
clustering analysis, both microscopic and macroscopic nonlinear behaviors can be calculated 
rapidly and accurately. The approach can be easily applied to multi-scale constitutive 
modeling of AM products with complex material microstructures and properties.

As a primary step, the data set is obtained by a priori FEM simulations; each element in 
the FEM simulation generates one data point. In our work, the data type is defined by, but not 
restricted to, the strain concentration tensor 𝐀𝐀𝐀𝐀(𝐱𝐱𝐱𝐱) which relates the microscopic strain 
𝜺𝜺𝜺𝜺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐱𝐱𝐱𝐱) to the macroscopic strain 𝜺𝜺𝜺𝜺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,

𝜺𝜺𝜺𝜺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐱𝐱𝐱𝐱) = 𝐀𝐀𝐀𝐀(𝐱𝐱𝐱𝐱): 𝜺𝜺𝜺𝜺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. (1)          
By definition, the similarity between two data points is characterized by the distance 

between the strain concentration tensor. As a well-studied data compression approach, 
clustering has been widely applied to pattern recognition, image analysis and bioinformatics. 
Clustering is used to group the data set in such a way that the data points in the same group 
are more similar to each other than to those in other groups. Two clustering results of a 2-
dimensional (2D) porous material with different numbers of clusters are provided in Figure 6.
This data compression approach in general can be applied to materials with arbitrary 
microstructures as long as the geometry is well resolved in the original DNS discretization. 

 

Figure 6. Clustering results of a 2D porous material based on strain concentration tensors. 
The mesh size of the original FEM calculation is 600 × 600.

After the clustering step, a micromechanics-based clustering analysis is developed to 
compute the interaction tensors between clusters. Since the data points in one cluster are
specified to have similar elastic behavior, it can be further assumed that there are uniform 
fields of internal variables in each cluster. With the help of Green’s function, the original 
partial differential equilibrium equations can be rewritten in an integral form, and the plastic 
strain is naturally introduced into the integral equation as an eigenstrain term. By integrating 
the Green’s function in each cluster, the interaction tensors can be obtained. Only a one-time 
calculation is required in order to obtain the interaction tensors; they can then be used for 
complex material behaviors without any modification. 

Number of clusters: 8 Number of clusters: 128
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Figure 7. (a) Uniaxial tensile simulated stress-strain curve for a 2D plastic porous material 
including damage, with number of clusters ranging from 2 to 512; (b) the field of damage 
parameter D at 𝜀𝜀𝜀𝜀11 = 0.06 when number of clusters 𝑘𝑘𝑘𝑘 = 128. D = 1 indicates the material 

is fully damaged.

As an illustration, the clustering analysis is applied to a 2D plastic porous material with 
damage. As we can see from Figure 7, the stress-strain curves converge according to the 
number of clusters. The field of damage parameters can be well reproduced with only 128 
DOFs, while the original FEM calculation has 360000 DOFs. In this sense, the computation 
cost is greatly reduced without losing the microscopic information. For AM material, the 
reduced order microstructural modelling based on advanced data compression provides an 
efficient and accurate tool for the following image-based constitutive modelling.

5 IMAGE-BASED MECHANISTIC PLASTICITY FOR AM MATERIALS
This section aims to explore the relationship between structure and performance of 

additively manufactured metals. The link between microstructure and macroscale material 
behavior is codependent. Global phenomena such as damage, fatigue, and fracture are 
dependent on microstructure features, which include crystallographic defects, voids, 
inclusions, allotropic phases, and crystal structures, e.g., secondary dendrite arms. Likewise, 
during a component’s life cycle, microstructure will continue to evolve as a function of the 
local mechanical state. In order to accurately predict material behavior during the mechanical 
simulation of a component, the material model must be embedded with the correct 
microstructural descriptors. Unlike traditionally-manufactured metals, the microstructure of 
additively manufactured metals are highly variable within a single part, so these descriptors 
are expected to vary as a function of position within the part.

The benefits to using experimentally-informed microstructure reconstruction techniques 
are the following: (1) incorporating experimental data is more accurate than previous 
assumptions of homogeneous or periodic distributions; (2) it promotes the development of 
physically-motivated models, since parameters related to the microstructure are determined 
by experiment; and (3) more general constitutive relationships can be developed while 
allowing local microstructural information to account for anisotropy or heterogeneity. In this 
fashion, a single material model can be used to predict the mechanical response of a 
component’s global behavior, and a standardized model may be developed for components 
generated from similar material compositions or manufacturing conditions. A more in-depth 
discussion of constitutive law development can be found in Section 6 of this paper.

One natural approach to capturing microstructure information is through the use of image-
based techniques. Once combined with the appropriate constitutive and evolution equations, 
the microstructural statistics can be correlated to the final product performance. However, this 
method has challenges associated with the chosen microstructure descriptor and material 
model. To help illustrate some of these challenges and potential solutions, the application of a 
void mechanics based constitutive law to reconstructed images will be described below. 

Damage parameter field at 𝜀𝜀𝜀𝜀11 = 0.06

Number of clusters: 128(a) (b)
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Additionally, methodologies for computational evaluation of fatigue properties will be 
discussed.

5.1 Experimental Image Reconstruction Techniques
In order to obtain the realistic 3D void distribution in as-built alloys, which can be used as 

the input for FEM mechanical behavior simulations, optical metallography (OM), SEM 
(Scanning Electron Microscopy) and FIB (Focused Ion Beam) are adopted as the 
microstructural characterization tools. OM imaging can provide a good understanding of the 
overall distribution of distinctly large pores, which are often caused by insufficient fusion. 
Dual-Beam systems FIB-SEM (FEI Strata DB 235 microscope) are used to conduct multiple 
2D serial sectioning to obtain 2D layer images which are then assembled to form a 3D volume 
representation of the defects using the AmiraTM software. Technical details regarding 3D FIB-
SEM reconstruction can be found in the work performed by O’Keeffe [12]. It should be noted 
that FIB-SEM is capable of determining the submicron size of the voids/inclusions, while OM 
is able to provide an overall distribution of defects in a larger scale. Therefore, a combined
technique of OM and FIB-SEM should be applied to gain deeper insight into the size 
distribution of voids in all length scales. Since FIB-SEM 3D tomography is usually extremely 
time consuming compared to 2D imaging, 2D OM/SEM microstructural imaging at different 
locations is considered as an alternative to perform a rapid analysis by scarifying the precision 
in 3D volume information. This could be applied as a compromise when performing model 
testing in preparation for a more rigorous mechanical simulation. Figure 8 illustrates the FIB-
SEM 3D reconstructed pore and voids distribution in the LENS processed SS316L sample 
made for Charpy notch test. 

Figure 8. Illustration of the 3D tomography using FIB-SEM dual systems. Z is the 
building direction for LENS processed 316L stainless steel. White dots are reconstructed 

pores and voids in the Charpy Notch bar made by AM 316L stainless steel sample.

5.2 Image-based Mechanistic Plasticity for AM Material
In the ductile fracture process, large deformation cause voids to nucleate, grow, and 

coalesce which will ultimately cause fracture of the material; the nucleation of new voids is 
generally initiated at inclusion sites. This can be accounted for in computational analysis of 
the material through the use of the proper constitutive relations. Assuming that the constitutive 
relation incorporates the microstructural descriptors of interest, e.g., voids and inclusions, the 
contribution of these descriptors can be accounted for in the overall material response. The 3D 
reconstructed volume shown in Figure 8, which includes spatial and volumetric descriptors 
for defects, can be placed into a simulated component by correlating each defect with the 
element that encompasses it in physical space, as seen in Figure 9.
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Figure 9. 3D void and inclusion volume statistically reconstructed from 2D OM/SEM 
images and microstructure placement into a tensile coupon mesh for experimental 

validation.

The selection of a material model can be a major challenge. In the case of these SS316L 
specimens, microvoids can be up to six orders of magnitude smaller than the tensile coupon 
being simulated. Explicitly modeling each defect using DNS approaches is computationally 
infeasible. Therefore, one potential method of overcoming this limitation is to use an implicit 
defect-modeling constitutive law. The Gurson-Tvergaard-Needleman (GTN) is a plastic 
damage model suitable for this purpose [13]. The yield criterion (Equation 2), which is a
function of the local void volume fraction 𝑓𝑓𝑓𝑓, and evolution equations for growth of the local 
void volume fraction (Equation 3) due to volumetric plastic strain (Equation 4), void 
nucleation (Equation 5), and shear loading (Equation 6) are [13, 14, 15],

𝜙𝜙𝜙𝜙� = �𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
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�
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+ 2𝑓𝑓𝑓𝑓𝛽𝛽𝛽𝛽1cosh �𝛽𝛽𝛽𝛽2𝜎𝜎𝜎𝜎:𝑰𝑰𝑰𝑰
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The higher the defect volume fraction, the weaker the element. The GTN model has 
demonstrated potential for capturing material across widely varying length scales. Previous 
work from Tang [16] and O’Keeffe [12] showed that image-based techniques combined with 
the GTN model could be used to effectively simulate crack openings by explicitly accounting 
for primary micron scale defects and using multiresolution theory for submicron scale defects. 
For the simulation of macroscale components, the GTN model should be implemented for 
much larger microstructural features with an emphasis on computational efficiency. Figure 10
shows a finite element simulation of a void-embedded tensile coupon. This combination 
allows what would normally be considered calibration parameters related to the 
microstructural defects within the GTN model, i.e., void and inclusion distributions, to simply 
be experimentally derived inputs. The residual GTN model parameters can be decoupled and 
calibrated using experimental tests specific to the sensitivity of each parameter. For example, 
the hydrostatic growth term can be decoupled from shear effects [15, 17] and varied 
parametrically; temperature and strain rate effects can also be isolated.
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Figure 10. Void driven fracture of a tensile specimen embedded with image-based 

microstructure information in a finite element simulation with the GTN constitutive model

The role of the microstructure and the structure-property relationship on the overall 
performance of AM materials cannot be ignored. The GTN model as a case-study has 
demonstrated the potential for experimentally-informed microstructural descriptors to be 
integrated into advanced material modeling techniques which incorporate microstructural 
conformation and constituent characteristics. Advanced image-based techniques are a 
promising direction for exploring the link between structure and performance in metal-based 
AM.

5.3 Multiscale Fatigue Modeling for AM
Mechanistic modeling of monotonic loading and the resulting mechanical response is a 

valuable endeavor; however, in most structural applications, component design must account 
for fluctuating loads and the progression of failure due to such loads, i.e., fatigue. To advance 
metal-based AM to the next level, mechanical fatigue modeling and accurate fatigue life 
prediction for functional AM components is necessary. Generally poor to fair fatigue 
performance of AM material is often acknowledged by authors studying the topic; it is most 
often attributed to (1) defects such as voids (micro-pores) and microcracks, (2) high residual 
stresses, (3) poor as-built surface finish, and (4) microstructural conformation 
[18,19,20,21,22]. However, the importance of each of these factors varies depending upon the 
specifics of the study, including: manufacturing process (SLM is commonly used for fatigue 
studies), material (titanium/steel alloys and nickel-based superalloys are common), and 
loading condition (low versus high cycle fatigue). 

While several groups have considered fatigue loading for AM parts experimentally, to our 
knowledge a mechanistic model of fatigue in AM materials has yet to be proposed. Efforts to 
adapt conventional fatigue models to AM processed materials, most notably that of Leuders 
and coworkers [23], have yielded limited success. While some conditions are captured well 
by adaptations of existing phenomenological models for Ti-6Al-4V processed with SLM, e.g.,
the √area model and the Danninger-Weiss model (se [23] for details), such models yet fail to 
accurately capture fatigue life of post-processed and as-built materials, respectively [23]. 
Wycisk et al. [24] take a slightly different approach, modeling fatigue crack growth using 
linear elastic fracture mechanics to determine crack propagation and final failure with the El 
Haddad and Topper approach. Use of classical fatigue stress-life methods such as the Paterson 
and Neuber equations are contraindicated by Lipinski et al. [25], at least for the case of thin-
walled structures, though a proposed notch stress-gradient approach was more successful in 
predicting fatigue strength in medical grade 2 Titanium. In this approach, the stress gradient 
at the expected crack location is determined from monotonic loading and used to define a 
fatigue concentration factor through fitting experimental results; the resultant apparent stress 
was used to assess failure of the structure. This approach appears to work satisfactorily to 
account for notches in parts with controlled porosity, though fails to account for particular 
microstructures that may interact to deleterious effect.
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Here, we shall focus on development of a multiscale mechanistic model of fatigue tailored 
to AM. A multiscale model is required due to the disparity of scales involved. Fatigue life 
depends upon interactions between microstructural defects and macrostructural geometric 
features. Further specifying AM for the present study, and even powder bed or direct 
deposition processes specifically, constrains our modeling effort to the four primary fatigue-
influencing parameters defined above. We propose to employ the multiscale fatigue model 
developed by Moore [26]. This model is based on two classic micromechanics laws,

 
𝜺𝜺𝜺𝜺 =

1
𝛺𝛺𝛺𝛺
� 𝝐𝝐𝝐𝝐(𝒙𝒙𝒙𝒙′)𝑑𝑑𝑑𝑑𝛺𝛺𝛺𝛺
𝛺𝛺𝛺𝛺

 (7)

 �𝒏𝒏𝒏𝒏 ∙ 𝝈𝝈𝝈𝝈� = 0 (8)
The first equality, shown in Equation (7), is used to relate macroscale strain, 𝜺𝜺𝜺𝜺, to micro-

strain, 𝝐𝝐𝝐𝝐, which is a function of the microscale coordinate over the micro-domain 𝛺𝛺𝛺𝛺. The 
second equality, shown in Equation (8), is used to enforce continuity of force across weak 
interfaces, where 𝒏𝒏𝒏𝒏 is the interface normal and 𝝈𝝈𝝈𝝈 is the microscale Cauchy stress. Moore then 
enforces these conditions only at key points as shown in Figure 11, allowing for a fast and 
flexible model.

Figure 11. Strain continuity assumptions for microscale constitutive law, overlayed over 
stress profile from highly detailed FEM calculations. Continuity points for xx-, yy-, and 

xy-stress components are C1, C2, and C3 respectively [26].

Figure 12. Reconstructed mesh from image data with two oxide inclusions, slide to 
highlight the oxides and interstitial void. This was used to calibrate the model.

To apply this to AM, a computational plasticity model is developed to capture defects, 
residual stresses, and local microstructure. The approach that we propose is based on the 3D 
image-based analysis similar to that of Moore (see Figure 12 for an example of a meshed 
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image used by Moore), which has been developed in conjunction with a multiscale fatigue 
model that focuses on the effects of voids, inclusions, and their interactions on fatigue life 
[26]. Moore’s work uses models informed by detailed crystal plasticity calculations calibrated 
with a statistical volume element. While intractable to use directly in a multiscale model, this 
can provide key insights into the nature of fatigue failures and can be used to inform 
development of simpler constitutive laws.

In the case of AM, a similar approach using a dataset trained from 3D reconstructions of 
AM microstructures (see Figure 8) will be used to inform constitutive law development to be 
applied to Moore’s multiscale fatigue model. The new constitutive law must compute strain 
gradients to allow adaption of the microstructure to changes in geometry, material, and 
additional nonlinearities. This constitutive law will then be used to compute local 
microstructural plasticity coupled to the FEM at the macroscale to compute component 
response. The physically based microscale information required to assess fatigue life will be 
retained, as Moore describes [26].

6 METHODS FOR IMAGE-BASED CONSTITUTIVE LAW DEVELOPMENT
The complexity in the material properties and the hierarchical anisotropic microstructure 

of additively manufactured materials necessitates development of new advanced material 
models. In most practical applications, e.g., metal forming, new material models are developed 
for specific materials under the specific loading conditions of the process using both 
phenomenological and mechanically-based techniques but typically these material models are 
neither versatile nor extensible. The versatility of the process parameters in AM combined 
with the resulting process-structure-property relations tend to leave traditional material 
modeling techniques useless. An ideal solution is then to develop a framework which can be 
used to quickly create new material models based on either structure, property, or a 
combination of the two.

The eXtended Finite Element Method (XFEM) incorporates an enrichment of the standard 
finite element shape function such that strong and weak discontinuities can be captured 
without the need for a conforming mesh. While this method is typically used for interfaces, 
crack initiation, propagation, and fracture, it can just as easily be applied to represent a multi-
phase microstructure. This has a lot of potential when microstructure descriptors from modern 
imaging techniques are so readily available. While it would be computationally prohibitive to 
perform analysis over a large domain using XFEM, it is still possible to rapidly generate 
statistically representative domains which can be used for development of homogenized 
material model development. This is a tremendous advantage compared to standard finite 
element analysis which is extremely costly in terms of meshing time. The impact of the 
material microstructure, and therefore the structure-property relation, can then be taken into 
account when developing the new model either explicitly or implicitly based on the 
microstructure descriptors. The stochastic properties can also be conserved using the 
methodology which is great for uncertainty quantification.

An example of this methodology can be observed in Figure 13. The six different material 
domains are composed of a large distribution of inclusions with varying microstructural 
conformations, i.e., elongated ellipsoidal and spherical constituents with random distributions. 
These domains were meshed using XFEM and the void nucleation rate was recorded for 
triaxial loading conditions. Void nucleation was dictated by a cohesive law at the matrix-
constituent interface. From the results, a physically relevant void nucleation theory for this 
material can be developed based on the microstructure descriptors available for the material, 
e.g., inclusion distribution and directional properties. One such XFEM-derived nucleation law 
which holds for hydrostatic, shear, and triaxial load conditions for spherical inclusions can be 
written as [27],
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where 𝑓𝑓𝑓𝑓𝑁𝑁𝑁𝑁 is the volume fraction of the nucleatable void, 𝜎𝜎𝜎𝜎𝑁𝑁𝑁𝑁 is the mean nucleation stress, 𝜎𝜎𝜎𝜎𝑠𝑠𝑠𝑠
is the standard deviation of the mean nucleation stress, 𝜎𝜎𝜎𝜎𝑦𝑦𝑦𝑦 is the initial yield stress, and 𝜎𝜎𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is 
the equivalent stress. This is similar, but not equivalent, to that proposed by Tvergaard and 
Needleman [14] for usage within the evolutionary equation for voids in the well-known 
Gurson model [13].

 
Figure 13. Void nucleation rate as a function of equivalent stress for various microstructure 
conformations [27].

Another possibility for predicting AM material properties through material modeling is 
through the use of generalized material modeling frameworks. Instead of developing material-
specific models, this technique would simply make an assumption of the types of mechanics 
which may be necessary for a given material class and, through generalized stress invariant 
functions, novel material models can be developed using a methodical procedure. For 
example,

𝜙𝜙𝜙𝜙∗ = 𝜙𝜙𝜙𝜙�𝜉𝜉𝜉𝜉 + 𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼1∗) − 𝛽𝛽𝛽𝛽(𝐼𝐼𝐼𝐼1∗)𝜎𝜎𝜎𝜎�𝜓𝜓𝜓𝜓 ≤ 0 (10)
where 𝜙𝜙𝜙𝜙∗ represents the yielding condition for plasticity, 𝜙𝜙𝜙𝜙� represents an effective stress value
in the reference frame of interest [28], 𝜂𝜂𝜂𝜂(𝐼𝐼𝐼𝐼1∗) represents a generalized additive pressure 
dependence function, 𝛽𝛽𝛽𝛽(𝐼𝐼𝐼𝐼1∗) represents a generalized multiplicative pressure dependence 
function, 𝜎𝜎𝜎𝜎� represents the matrix flow stress, 𝜉𝜉𝜉𝜉 represents the nonlinearity of the yield surface, 
and 𝜓𝜓𝜓𝜓 represents a parameter for ensuring consistent units within the yield condition. This 
approach is convenient for computational material modeling because the resulting 
implementation need only be successfully developed once and then it can simply be used as a 
template for new models. New model implementation would then require definition of the 
governing equations. The nature of the material modeling framework also implies that 
incorporating microstructure effects either through phenomenological approaches or using 
mechanics-based theories is still an option. Extension of existing material models is also 
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simplified, e.g., extension of an isotropic pressure-dependent model to anisotropy. This 
methodology could be used to incorporate image-based microstructural effects by combining 
the function

𝛽𝛽𝛽𝛽(𝐼𝐼𝐼𝐼1∗) = �1 +  (𝑞𝑞𝑞𝑞1𝑓𝑓𝑓𝑓∗)2 − 2𝑓𝑓𝑓𝑓∗𝑞𝑞𝑞𝑞1cosh �𝑒𝑒𝑒𝑒2𝐼𝐼𝐼𝐼1
∗

2𝜎𝜎𝜎𝜎�
� (11)

with equations (9) and (10) such that void-induced weakening is obtained (𝑞𝑞𝑞𝑞1and 𝑞𝑞𝑞𝑞2 are yield 
function shaping parameters and 𝑓𝑓𝑓𝑓∗ is an effective void volume fraction) but the form of the 
effective stress used and the hardening imposed through the matrix flow stress equation can 
still be altered based on other microstructural/mechanistic or phenomenological influences.

7 CONCLUSIONS
AM of metallic materials is a rapidly flourishing field fostering synergistic interactions 

among disciplines for challenges and opportunities. For example, AM products are 
characterized by high porosity and anisotropic material behavior and microstructures which 
introduce difficult in predicting the final product behavior, thus delaying the presence of AM 
in the industrial sector. These phenomena are not unique to any particular material or material 
class, e.g. titanium alloys and stainless steels both have these traits. The process parameters 
clearly have a profound effect on the overall performance of AM products. This necessitates 
the development of efficient methodologies for assessing AM products and developing 
computational tools to assist in the prediction of process-structure-property relations.

The strength of using experimentally-informed mechanistic models lies in the efficient use 
and analysis of the structure and performance data obtained in a single experiment; this is a 
practical way of determining how well their relationship can be explained by developed 
material models. By choosing a constitutive law that can incorporate image-based 
microstructure, the parameters to be calibrated are reduced and the accuracy of mechanical 
predictions for simulated components can be improved. A well-chosen material descriptor, 
when combined with a general constitutive law, provides a flexible material model that can 
accommodate a variety of microstructural distributions. The implementation of the GTN 
model on OM/FIB-SEM reconstructions of void and inclusion data holds promising 
quantitative results for the multiscale simulation of ductile deformation and fracture, ranging 
from defects of submicron scale to parts on the macroscale. The reduced order microstructural 
modeling based on advanced data compression provides an efficient and accurate tool for the 
image-based constitutive modeling.

While some experimental efforts to characterize the fatigue response of AM processed 
parts has been published, very little has been published on fatigue simulation and life 
prediction. Only three papers thus far attempt to predict fatigue life specifically for AM to our 
knowledge, all of which rely on macroscale fitting of experimental results, limiting the boarder 
applicability and mechanistic completeness of the studies. Here, we propose a mechanics 
based multiscale method to predict fatigue life with microscale constituencies informed by 
AM-specific parameter. The proposed model predicts macroscale fatigue response while 
maintaining the necessary microscale information. Development of a multiscale fatigue model 
tailored to AM allows for more informed topological design of components through the 
addition of a fatigue resistance criterion. Furthermore, the importance of microstructural 
defects and their location can be assessed to help inform AM process and process design 
choices.

The need for novel techniques which allow development of image-based constitutive 
modeling techniques has been discussed. Two proposed methods for realizing a solution for 
this need have been presented: (1) an XFEM-based methodology which can be used to quickly 
reconstruct image-derived microstructures within stochastic properties and (2) the concept of 
a constitutive model development framework which uses generalized stress invariant functions 
which can be tailored for each material and can incorporate microstructural effects. The 
purpose of these methods is to allow for a simple and efficient procedure for constitutive model 
development. The implications that these methods have for AM are many. The primary benefit 
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is in the fact that AM product material behavior is unique in that powder composition does not 
necessarily govern the overall response, i.e., microstructural descriptors are of equal (if not 
more) importance.
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