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Preface

This conference marks the 9th International Symposium on Superalloy 718 and
Derivatives. The legacy which started in 1989 in Pittsburgh, Pennsylvania, con-
tinues to provide a rich forum for a combination of industrial and academic tech-
nical papers, presentations, and posters on highly relevant, high-temperature,
superalloy materials. The strength of this series is in its breadth of technical,
geographic, demographic, and application coverage. Over the years, it has provided
an event for all those interested in high-temperature materials and reaches well
beyond the simple exchange of technical findings. It is regularly a reunion for the
many who work together solving development and production challenges at a
distance from one another through ever-increasing electronic-enabled
collaborations.

This 2018 proceedings volume consists of 72 papers; topic coverage includes the
traditional subjects of casting, forging, and mechanical properties as well as topics
on microstructure, joining, and novel processing. In the most recent two confer-
ences, the advent of novel processing technologies including additive manufac-
turing has begun to open new avenues of investigation in what is a very dynamic
field of engineering and science. Across the range of technology areas, the use of
advanced characterization and modeling continues to make significant advances in
the field. Contributions in this year’s conference have spanned a wide swath of the
industrialized world from Canada to South Korea and from the USA to Japan;
60% of papers come from outside the USA. Authors represent academic institutions
(44%), laboratories (17%), and companies (36%). Although from a great diversity
of areas and backgrounds, many gather to discuss knowns and unknowns and to
forge ahead with enriching the understanding of metallurgy and application of these
materials.
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Our volunteer team has worked to bring a high quality and broadly relevant
conference to authors and conference participants. We hope that the conference and
these proceedings continue to enrich the advancement of understanding and
application of these materials now and in the years to come.

Eric Ott, Lead Editor
Xingbo Liu, Organizer
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Quantitative Texture Prediction
of Epitaxial Columnar Grains in Alloy
718 Processed by Additive
Manufacturing

Jian Liu, Qian Chen, Yunhao Zhao, Wei Xiong and Albert To

Abstract The lack of a reliable theoretical model of the processing-microstructure
relationship of AM (Additive Manufacturing) material is preventing AM technol-
ogy from being widely adopted by the manufacturing community. The goal of this
work is to establish the link between the microstructure (texture) and the process
parameters of metal AM processes. A quantitative method based on the epitaxial
growth of columnar grains within and across melt pools is proposed to predict the
texture formation during a metal AM process. The state-of-the-art
CALPHAD-informed FEM (finite element method) simulation has been used to
predict the geometry and thermal profile of the quasi-steady melt pool. The thermal
gradient distribution within the 3D melt pool determines the crystallography
direction and growth direction of the columnar grains within each deposited single
tracks. The single tracks with the predicted geometry are amalgamated together to
represent the bulk part, and the epitaxial growth of grains across the boundary of
neighboring tracks are quantitatively modeled. The proposed method is calibrated
and validated by experimental studies of metal AM processed Alloy 718.

Keywords Additive manufacturing ⋅ Inconel 718 ⋅ Microstructure

Introduction

The objective of this research is to develop a part-scale process-microstructure
simulation tool to predict the microstructure evolution of Alloy 718 processed by
powder bed laser fusion process integrating FEM thermal analysis and grain texture
modeling. A great research interest of additive manufactured Alloy 718 is
improving the performance of structural components for high temperature appli-
cations such as jet engine parts, where both creep and strength are critical and need
to be designed for. The methodology developed in the proposed research will
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introduce an efficient way to govern the in-situ microstructure evolution during
laser process, which will directly drive the optimization for better mechanical
properties of AM parts.

Modelling

FEM Thermal Modeling and Simulation of Single
Track Depositions

The quasi-steady state melt pool profile within a single track is simulated by finite
element thermal simulation using ANSYS FE software (Fig. 1a). The process
parameters of P = 200 W and V = 1 m/s are employed in the case study in this
report. The predicted thermal gradients versus solidification rates along the melt
pool boundary in the X-Z plane are plotted against the columnar-to-equiaxed
transition curves of Alloy 718 [1, 2] (Fig. 1b). From the FEM predicted G-R
curves, it can be expected that the solidification is in columnar dendrite mode where
our columnar grain growth model is applicable. The columnar dendrite mode is also
verified by electron backscatter diffraction (EBSD) measurements. The FEM mode
parameters, such as the absorption factor of laser power and the enhanced
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Fig. 1 a The FEM prediction of a single track deposition, b predicted thermal gradients G (y-axis)
versus solidification rates R (x-axis) along the melt pool boundary in center X-Z plane, against the
curves of solidification mode transition between columnar to mixed mode (blue line) and mixed to
equiaxed mode (red line) [1], c the predicted and experimented melt pool shape in Y-Z plane, d the
predicted 3D melt pool geometry
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conductivity factor within melt pool, were calibrated by correlating the predicted
melt pool shape in the Y-Z plane with experimental result (Fig. 1c). The predicted
3D melt pool geometry (Fig. 1d) using the calibrated FEM model parameters are
used as input for the grain growth model.

Columnar Grain Growth Model for Texture Prediction

A new Lagrangian approach for simulating columnar grain growth is proposed
based on solidification theory. The solidification morphology of metals depending
on the thermal gradient and solidification rate values at the solid-liquid interface [3].
In the case of columnar dendrite mode solidification in AM, dendrite arms will
grow epitaxially from the seed crystal provided by the base metal, since the solid
(base) metal and the liquid metal have similar chemical composition and the same
crystal structure. Each dendrite arm will have the same crystallographic orientation
as its seed crystal. The polycrystal base provides different seed crystals of different
orientations at different locations. Within a small element surface around a point,
the crystallographic orientation of the dendrite arm grow from this location can be
determined if we know the 3D microstructure of the substrate. The growing
direction of the dendrite will be along one of the <001> axis of its crystallographic
orientation (the one that is most closely aligned with the local thermal gradient
vector) [4]. In the proposed grain growth model, the dendrite arms were simplified
as line segments and the growth of the arms will be simplified as the tracking of
moving front point of each dendrite arm line. Such a Lagrangian approach is
expected to be much more computationally efficient than the Eulerian approach
such as cellular automaton [5–8]. At each step in the proposed approach, the growth
direction of each dendrite arm line needs to be evaluated, since the local thermal
gradient is changing, and hence the growth direction could change from one crystal
<001> axis direction to another. While the dendrite arms grow from the same seed
crystal are mostly parallel to each other, dendrite arms from different neighboring
seed crystals will be either converging or diverging. For the converging case, the
competition of dendrites and the growth of more preferred dendrites over the less
preferred arms need to be incorporated into the model. For the diverging case, the
branching mechanism needs to be incorporated to generate new dendrite arms to fill
the gap between diverging primary dendrites. A 2D case demonstration of the grain
growth model is shown in Fig. 2. After the growth, the dendrite arms grown from
the same seed crystal will have identical crystallographic orientation and can be
grouped into one columnar grain that has a 3D shape and volume. The resulting
overall texture of one scan track can be obtained by adding each columnar grain
orientation and its associated weight (volume) into a collection. An ideal shallow
melt pool (W/D = 3) is employed as input to predict the grain growth and the
resulting texture of a single track scan (Fig. 3). The computation time for such as a
simulation was about 10 min on the desktop computer.

Quantitative Texture Prediction of Epitaxial Columnar Grains … 751



Validation of Grain Growth Model with EBSD Results

The columnar grain growth model is used to simulate 3D solidified grains within a
single track. The ideal experimental validation would be a comparison with 3D
EBSD measurement of the solidified grains utilizing FIB-SEM system. However,
the experimental studies of the solidified grains are usually limited to EBSD
measurement of 2D cross-sections (along Y-Z, X-Y, X-Z planes) of the printed
track. Here we use EBSD measurement of the transverse (Y-Z plane) cross-section
to validate the grain growth model (Fig. 4a). A single track of Alloy 718 was
printed on a 1 mm thick substrate plate of the same material using the
EOSINT DMLS M290 system. A cubic sample was cut from the plate around the
deposited single track with one face perpendicular the track. This sample surface
was prepared for EBSD. The EBSD measurement was used to construct the
solidified grains within the transverse cross-section. The transverse cross-section

Fig. 2 The 2D case demonstration of the grain growth model: a initializing the dendrites arms
from seed crystals, b dendrite lines during the growth simulation, c finalized dendrite lines after
growth simulation

Fig. 3 Predicted a columnar grain and b texture pattern of a single track with a shallow melt pool
geometry
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was also imaged under the optical microscope (OM) after etching to reveal the grain
boundary (Fig. 4b). From the EBSD and OM results, the relevant grains are those
that lie within the melt pool and across the melt pool boundary (Fig. 4c). The
un-melted part of the grains (Fig. 4c) will serve as input to the grain growth model
to predict the grain growth within melt pool. Since the experimental results are 2D,
a thickness needs to be assumed to extend the 2D partially melted grains to 3D
grains (Fig. 4d), which are then inserted into the virtually generated substrate mi-
crostructure (Fig. 4e). After the simulation of grain growth (Fig. 4f), the 2D
cross-section of the simulated grains can be compared with experimental results.

Figure 5 is the transverse grain structure comparison of the experimental
solidified grains based on EBSD measurement with the simulated grain by the
columnar grain growth model. The process parameters are P = 200 W and
V = 1 m/s. The input for the grain growth model was the FEM predicted melt pool
geometry profile using the same process parameters and calibrated FEM model
parameters. A good match between experimental and prediction can been observed
in terms of the grain shape and orientation.

Fig. 4 The demonstration of the validating procedure for grain growth model using experimental
measurement of the transverse cross-section: a EBSD measurement of the transverse cross-section
of the single track, b the optical microscope image of the same cross-section, c the relevant grains
that lie within the melt pool and across the melt pool boundary, d the un-melted part of the relevant
grains that were extended from 2D cross-section measurement to 3D grains, e the virtually
generated substrate microstructure at the begin of solidification with the inserted grains obtained
by EBSD and f the microstructure after the simulation of grain growth
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Conclusions

In this research, FEM thermal analysis of melt pool geometry and thermal profiles
in single track depositions is performed and employed as input for texture pre-
diction. An efficient epitaxial columnar grain growth model is developed to predict
grain growth and resulting texture. EBSD measurement of the transverse (Y-Z
plane) cross-section is then used to validate the grain growth model. A good match
between prediction and experiments has been observed. The columnar grain growth
model will be extended from single track to multiple tracks and multiple layers to
study effects of processing parameters (hatching space, layer thickness and scan-
ning strategy, etc.) on the texture evolution in 3D bulk part additive manufacturing.
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