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Abstract In this work, two graded transition interlayers were designed using a
CALPHAD-based ICME framework (CALPHAD: Calculation of Phase Diagrams;
ICME: Integrated Computational Materials Engineering) for joining Inconel 740H
superalloy with P91 steel. Successful builds with the designed interlayers (content
of P91 steel are 60 and 85 wt.%) sandwiched between the constituent materials were
fabricated using wire-arc additive manufacturing. 60% P91 interlayer exhibited an
FCC structure with low hardness, while the 85% P91 interlayer had a martensitic
structure with high hardness. A two-step post-heat treatment consisting of homoge-
nization at 1150°C and aging at 760°C was designed. 60% P91 interlayer showed no
improvement in hardness after aging. It agrees with the CALPHAD modeling that
predicts a lack of effective strengthening precipitates at 760°C, whereas the hard-
ness of 85% P91 increased significantly after aging for 8 h due to the precipitation
of the M23C6 phase. Mechanical tests equipped with digital image correlation were
performed to determine the location of the failure and tensile properties. As-built
and heat treated 60% P91 build failed in the graded alloy block, whereas the as-built
85% P91 alloy failed at the 85% P91/740H interface, and the aged alloy failed in
the pure P91 region. This proves that post-heat treated 85% P91 is much stronger
than pure P91, and the alloy design strategy used in this work proves successful for
developing interlayers for dissimilar joining.
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Introduction

In advanced ultra-supercritical (A-USC) powerplant, high operating temperatures
(>700°C) and pressures (35 MPa) demands the use of materials with superior creep
and oxidation resistance. This led to the development of Inconel 740H superalloy
(referred to as 740H hereafter) with a high amount of Cr and Co to attain excellent
creep and oxidation properties till 850°C [1], which is expensive. However, there
are several regions that operate below 650°C, where the use of 740H superalloys is
not required, whereas ferritic-martensitic P91 steel with good creep resistance till
650°C [2] and cheaper than 740H superalloy will be sufficient. The use of different
materials in different regions of an A-USC powerplant necessitates the joining of
dissimilar materials.

Dissimilar materials can be joined using traditional techniques such as welding
[3, 4], brazing [5], or diffusion bonding [6]. In these processes, there are several
disadvantages from a process viewpoint, such as long processing time, high produc-
tion cost, and complex setup with multiple steps involved [7]. From a microstruc-
ture standpoint, porosity, crack formation, as well as structural distortion due to the
formation of wider heat affected zone (HAZ), are the major drawbacks. In order
to overcome these difficulties, additive manufacturing (AM) has become the most
sought-after technique to accomplish the joining of dissimilar materials. In an AM
process, the component is built layer-by-layer using 3D CAD models [8]. Hence, it
has advantages such as freedom to produce complex parts, reducedmaterial wastage,
and high efficiency [9].

Several reports are available for multi-material deposition using directed energy
deposition (DED)-based systems such as laser engineered net shaping (LENS) using
powder as starting material [10–13]. Wire-arc additive manufacturing (WAAM) is
another DED-based technique that uses wire as starting material which is melted and
deposited using an electric/plasma arc. The high deposition rates in WAAM make
it suitable for fabricating large parts that are valuable for real-time applications.
Besides, the cost of powders is 2–5 times higher than wire and hence, the materials
costs are much lesser for the WAAM process [14]. Owing to these advantages, the
WAAM technique will be an appropriate technique for multi-material manufacturing
and few reports are available in the literature for using WAAM to join dissimilar
aluminum alloys [15, 16], dissimilar steels [17] as well as stainless steel with Ni-base
superalloy [18].

Dissimilar joining can be accomplished either by direct bonding of the mate-
rials or by introducing an interlayer that leads to a smooth change in composition
and properties between the constituent materials. The P91 steel has a martensitic
structure, while the 740H superalloy has an γ matrix with FCC structure. Moreover,
there is a drastic difference in the coefficient of thermal properties of P91 steel and
740H superalloy. As reported in our previous work [19], when P91 steel was directly
bonded over 740H superalloy, cracks formed in the interfacial region and the thermal
residual stresses developed due to the differences in thermal properties were relieved
by the crack formation. Therefore, the introduction of an interlayer is imperative
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to avoid cracking while joining P91 steel with 740H superalloy, and an appropriate
interlayer that can ensure a gradual transition between the constituentmaterials needs
to be identified.

In this work, a CALPHAD-based ICME framework (CALPHAD: Calculation
of Phase Diagrams; ICME: Integrated Computational Materials Engineering) has
been applied to design potential graded alloy compositions that can act as an inter-
layer between P91 steel and 740H superalloy. Builds with the designed graded alloy
interlayer sandwiched between the constituent materials were successfully fabri-
cated using WAAM. The microstructure and mechanical properties of the WAAM
builds have been investigated extensively and a suitable post-heat treatment has
been designed to remove microstructure inhomogeneities and induce precipitation
to improve the properties. This work will prove useful for identifying the graded
alloy compositions that can be suitably used as transition interlayers while joining
dissimilar materials using any manufacturing technique.

Materials and Methods

Computational Details

In order to identify the compositions that can potentially act as an interlayer, high-
throughput thermodynamic calculations were performed using TC-API (Thermo-
Calc Application Programming Interface) toolkit known as TC-Python (based on
the Python programming language) which is included with the Thermo-Calc soft-
ware. The content of P91 for the graded alloys was calculated in wt.% and will be
expressed as%, hereafter. The fraction of phases at 760°C for different mixtures (101
entries) of P91 steel and 740H superalloy whose compositions were determined by
calculating the weighted mean for each element for varying content of P91 steel (in
steps of 1%) were calculated. TCNI8, the commercial multicomponent thermody-
namic database developed specifically for Ni-base superalloys was used for these
calculations. In addition, theMartensite start (Ms) temperatures were determined for
these compositions using predictive machine learning models developed by Agrawal
et al. [20] for the determination of Ms temperature.

WAAM Processing

The composition (in wt.%) as quantified by the manufacturers for the P91 steel
(ER90S-B91, manufactured by Euroweld, Mooresville, NC, USA) and the 740H
superalloy (Special Metals Welding Products Co., Newton, NC, USA) wires that
were used for fabricating the graded alloy builds using WAAM are listed in Table
1. The nominal composition of the designed interlayers, namely, 60 and 85% P91
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graded alloys determined using the computing theweighted average for each element,
is also listed in the same table. The diameter of the P91 steel and 740H superalloy
wires were 0.9 and 1 mm, respectively. The builds were fabricated using a robotic
WAAM system (ABB robotic platform) in Raytheon Technologies Research Center
(RTRC). The system consists of a six-axis robot connected to the twin-wire feeder
as well as a plasma arc welding (PAW) torch and the material was deposited over
a 12 mm thick mild steel substrate. Purified argon gas was employed for creating
the plasma and also used as a shielding gas for the PAW torch with a flow rate of
1.1 L/min to avoid oxidation during deposition. A square wave pattern with a raster
pattern width of 11 mm and step-over of 3 mm was used for depositing each layer
(Fig. 1) with a constant deposition rate of 0.9 kg/hr. The distance from the torch to
the deposition surface and the wire feeding angle were maintained at 15 mm and
30°, respectively.

The printing parameters used for each layer are listed in Table 2. The printing
parameters were chosen based on design of experiments for deposition of the
constituent materials. Several conditions were tested with various travel speeds,
wire feeds, and power, until a stable melt pool was achieved. An average voltage
of 20.9 V was maintained during the deposition. The layer height was set as 2 mm
for the deposition of P91 steel layers while 1.8 mm for the 740H superalloy. A layer
height of ~1.5 mm was maintained for the deposition of the graded alloy. A higher
current and lower travel speed as well as wire feed rate were used for the first and

Table 1 Composition (in wt.%) of the P91 and 740H wires used for deposition in the WAAM
process and the nominal composition (in wt.%) of 60 and 85% P91 alloy

Material Composition (wt.%)

Al C Co Cr Cu Fe Mn Mo Nb Ni Ti Si V

P91 0.003 0.09 – 9.2 0.03 Bal. 0.45 0.91 0.052 0.4 – 0.26 0.21

740H 1.4 0.03 20.3 24.6 0.02 0.2 0.24 0.5 1.49 Bal 1.5 0.1 –

60%
P91

0.56 0.066 8.12 15.4 0.026 53.1 0.37 0.75 0.63 20.1 0.6 0.2 0.13

85%
P91

0.21 0.081 3.05 11.5 0.03 75.2 0.42 0.85 0.27 7.8 0.23 0.24 0.18

Fig. 1 Schematic of the tool
path used for the fabrication
of graded alloy builds using
WAAM
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Table 2 Processing parameters for the fabrication of 60 and 85% P91 graded alloy builds using
WAAM

Layer no. Average current (A) Travel speed (mm/s) Wire feed (m/min) Material

60% P91 graded build

Layer 29–44 166 5 2.44 740H

Layer 13–28 166 5 1.88 P91
0.97 740H

60% P91

Layer 3–12 166 5 3.10 P91

Layer 2 200 4 2.90 P91

Layer 1 220 3.5 2.90 P91

85% P91 graded build

Layer 29–44 166 5 2.44 740H

Layer 13–28 166 5 2.67 P91
0.37 740H

85% P91

Layer 3–12 166 5 3.10 P91

Layer 2 200 4 2.90 P91

Layer 1 220 3.5 2.90 P91

second layers of P91 steel to ensure good adhesion with the mild steel substrate.
The diameter of the P91 steel and 740H superalloy wires, along with their material
densities, were used to calculate the relative weight percentage and resulting wire
feed values to achieve the desired blends for the graded alloy blocks. The interpass
temperature was fixed as 175°C during the deposition. The interpass time for each
layer was not fixed and instead it was dictated by the time taken for the sample to
cool below 175°C.

Experimental Details

The builds were sectioned along the build (Z) direction, i.e., the XZ plane of the
build using electric discharge machining (EDM, Mitsubishi MV2400S, Japan). The
sections were ground from 800 to 1200 grit SiC emery papers followed by polishing
using suspensions of diamond with particle sizes of 3 and 1 μm as well as colloidal
silica with a particle size of 0.04 μm. The as-polished surface was viewed under FEI
Scios Dual Beam focused ion beam (FIB)—scanning electron microscope (SEM)
attached with a field emission gun (FEG) source. The elemental composition was
determined using an energy dispersive spectroscope (EDS,Octane Elite EDS system)
attached to the SEM.Detailed phase and grain structure analysiswas performed using
electron backscattered diffraction (EBSD, EDAX Hickory EBSD system) attached
to the SEM, and the data was analyzed further using TSL-OIM software (version 8).

Hardness measurements were carried out using an automated Vicker’s micro-
hardness tester (AMH55 with LM310AT Microindenter, LECO Corporation, USA)
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with a load of 300 g and dwell time of 10 s. Around 400 indentations were made
along the build direction (Z direction) to determine the hardness distribution. Flat
dog bone-shaped tensile bars (gauge length = 25 mm, total length = 66 mm, width
= 5 mm, and thickness = 4 mm) were extracted from the XZ plane of the sample
such that both the interfaces are included within the gauge section. Uniaxial tensile
tests were carried out with a strain rate of 10–3 s−1 using MTS 880 universal testing
machine with 100 kN capacity. The strain was measured using non-contact digital
image correlation (DIC, VIC-2D 7, Correlated Solutions Inc., USA), in order the
identify the failure location. The spatial distribution of strains in the gauge section
was captured using DIC. The strain was averaged over the complete gauge section
and extracted for plotting the stress–strain curves.

Results and Discussion

Computational Design and WAAM Processing

The phase fractions at 760°C predicted usingCALPHADmethod and theMs temper-
atures estimated using machine learning model as a function of the P91 steel content
are shown in Fig. 2a and b, respectively. The thermodynamic calculations were
performed at 760°C since it is the optimized aging temperature for P91steel and
740H superalloy fabricated using WAAM, based on our previous works [21, 22].
According to the thermodynamic predictions, the matrix phase will have the FCC
structure from 0 to 90% P91 and the BCC phase will start to form after 90% P91.
Amongst the secondary phases, MX (M: Ti, Nb; X: C) is predicted to form in all the
compositions, whereas M23C6 forms only between 83 and 100% P91. Since 740H
is a γ′ strengthened superalloy, it appears between 0 and 50% P91 and it is accom-
panied by σ phase formation from 8 to 45% P91. However, the formation of σ phase
is not expected due to the slow diffusion kinetics involved.

The predicted Ms temperature shows a linear trend as a function of P91 content
with a small discontinuity close to 60%P91 (Fig. 2b). Twograded alloy compositions,
namely, 60 and 85% P91 were identified to test their potential to act as an interlayer
between P91 steel and 740H superalloy. Both these compositions are expected to
have an FCC matrix structure. However, the calculated Ms temperature of 85% P91
is close to 250°C thus, martensite is expected to form during the cooling process.
Since theMs temperature for the 60%P91 graded alloy is less than room temperature
(~15°C), an FCC matrix is expected to form for this composition. In addition, based
on the thermodynamic predictions, 85% P91 alloy is expected to be strengthened by
the formation of M23C6 precipitates along with the MX phase while the 60% P91
graded alloy will not have any of the major strengthening precipitates except the MX
phase.

The graded alloy builds with the designed interlayer composition block sand-
wiched between the P91 steel and 740H superalloy are shown in Figs. 2c and 2d.
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Fig. 2 a Phase fraction and bMs temperatures predicted as a function of P91 content. Successful
crack-free builds fabricated using WAAM for c 60% P91 and d 85% P91 graded alloys

The builds were 100mm long, 10mmwide, and the total height of the build including
the substrate was 87 mm. Different regions of the build were identified based on the
differences in the melt pool size as seen from the lateral sides of the build. These
builds were intended to be deposited for a total ideal height of nearly 77 mm from the
substrate with an ideal height of 24, 24, and 28.8 mm for P91 steel, graded alloy, and
740H superalloy, respectively. The measured heights of each block were ~21 mm
for P91 steel, 24 mm for 60 and 85% P91 graded alloys, and ~29 mm for the 740H
superalloy with a total height close to 74 mm which is very close to the ideal height
of the build. Since the first two layers of P91 steel were mixed completely with the
substrate for good adhesion, the height of the P91 steel block was slightly smaller
than the ideal height. Hence, the interpass temperature (175°C) used for depositing
these builds has been effective in reducing the dilution between the layers.

The composition of the 60 and 85% P91 graded alloy builds along the build
direction of the samplemeasured usingEDS is shown in Fig. 3a and b. It was observed
that the measured composition of the graded alloy interlayer is close to the nominal
composition listed in Table 1. This proves that WAAM is a robust AM technique to
deposit a graded alloy using the twin-wire feeder. Moreover, it can be clearly seen
that Fe and Ni concentration spikes downward throughout the graded alloy and 740H
superalloy regions along with a simultaneous increase in the composition ofMo, Nb,
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or Ti. Further EDSmapping confirms the presence of secondary phases in the graded
alloy blocks as shown in Fig. 3c and d. From Fig. 3(c1–c4) it is evident that the bright
phase with irregular structure is rich in Nb, Mo, and Ti, which corresponds to the
Laves phase. Figures 3(d1–d3) shows that the dark square-shaped phase has a high
content of Ti and a moderate amount of Nb which can be correlated with the MC
carbide.

The inverse pole figure (IPF) and phase maps obtained using EBSD for the 60 and
85% P91 alloys are shown in Fig. 4. From the phase maps shown in Fig. 4b and d, it
can be found that the 60% P91 graded alloy has a matrix with FCC structure while
the 85% P91 alloy has a martensitic structure. This proves that the Ms temperature
prediction matches well with the experimental observation for the designed graded
alloys. Moreover, a coarse-grained microstructure with no particular texture was
observed in the 60% P91 graded alloy, as shown in Fig. 4a, which could be possibly
due to the multiple heating and cooling cycles underwent during the deposition. In
the 85% P91 graded alloy (Fig. 4b), a clear partition was observed, where one side

Fig. 3 Composition profile along the build direction determined using EDS for a 60 and b 85%
P91 graded alloy blocks. Compositions profiles for c1–c4 Laves phase and d1–d3 MC carbide
obtained using area EDS mapping showing that the Laves phase is rich in Mo, Nb, and Ti while the
MC carbide is rich in Ti and Nb, respectively
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Fig. 4 IPF and phasemaps obtained using EBSD for a,b 60%and c,d 85%P91 graded alloy blocks
showing a coarse-grained FCC structure for the 60% P91 alloy and a fine martensitic structure for
the 85% P91 alloy

had grains mostly oriented between (111) and (001) planes (blue, pink, and orange
grains, refer to IPF color map) while the other side had grains oriented mostly close
to (101) plane (green grains, refer to IPF color map). Hence, the partition between
these two types of grains signifies the presence of a prior austenite grain boundary.

The hardness maps obtained along the build direction in the XZ plane of the
graded alloys builds are shown in Fig. 5. The hardness of 60% P91 graded alloy is
very low in comparison with the pure P91 steel and 740H superalloy. On the other
hand, the hardness is predominantly uniform along the build direction for the 85%
P91 alloy and the average hardness is higher than the corresponding value for the
60% P91 graded alloy. The striking difference between the hardness of 60 and 85%
P91-graded alloys can be attributed to the microstructure of the matrix phase in these
alloys. The 60% P91 alloy consists of an FCC phase structure which is generally
softer than the martensitic matrix found in the 85% P91 alloy. The 60% P91 alloy has
coarse grains, whereas the 85% P91 alloy has a fine martensitic structure (Fig. 4). In
addition to the hardness of the graded alloy blocks, there were other weak and strong
regions that could be observed from the hardness maps. In the 60% P91 graded alloy
build (Fig. 5a), the P91 steel close to the interface between P91 steel and 60% P91
alloy is much higher in comparison with the same material away from the interface.
Similarly, a region of low hardness was identified at the interface between 85% P91
alloy and 740H superalloy, as seen in Fig. 5b.

In order to probe into the reason for the formation of harder P91 steel close to the
60% P91 alloy and a weak region between 85% P91and 740H superalloy, further
microstructure analysis was performed using EBSD and the IPF and phase maps
from these regions are shown in Fig. 6. The IPF and phase maps from the interface
between P91 steel and 60% P91 alloy show that the martensite in the P91 steel region
is very fine (Fig. 6a and b) in comparison with the P91 steel farther away from the
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Fig. 5 Hardness maps obtained along the build direction in the XZ plane of a 60% and b 85% P91
graded alloy. The length and width of the hardness maps are 40 and 11 mm, respectively. The color
bar corresponds to the hardness in HV0.3

interface where the martensite grains are coarser as it can be seen from Fig. 6c and
d. The difference in the grain structure of the P91 steel, near and away from the
interface can be attributed to the cyclic re-austenitization of the martensite. When
the first few layers of 60% P91 alloy are deposited over the previously deposited
P91 steel, the temperature of the P91 steel close to the interface increases to the
extent that the martensite can undergo re-austenitization followed by cooling to
form refined martensite. It has been demonstrated in our previous work [23] that
cyclic re-austenitization in steels can lead to refinement of martensite with increase
in hardness. From the IPF and phase maps obtained from the interface between 85%
P91 alloy and 740H superalloy (Fig. 6e and f), a band of two-phase region consisting
of martensite from 85% P91 alloy and γ phase from 740H superalloy is clearly
visible. Hence, the region with low hardness at the interface between 85% P91 alloy
and 740H superalloy can be attributed to the difference in the matrix phase structure
of the two alloys leading to the formation of a mixture of martensite and γ phases.
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Fig. 6 IPF and phase maps obtained using EBSD at a, b interface between P91 steel and 60% P91
graded alloy, c, d P91 steel farther away from the interface between P91 steel and 60% P91 graded
alloy and e, f interface between 85% P91 graded alloy and 740H superalloy

Design of Post-heat Treatment and Mechanical Testing

A two-step post-heat treatment comprising of homogenization and agingwas adopted
where the homogenization step will dissolve the secondary phases and relieve the
residual stresses, whereas the aging step will induce the precipitation of the strength-
ening phases. The calculated phase fractions as a function of temperature for the 60
and 85% P91 graded alloy composition listed in Table 1 are shown in Fig. 7. The
homogenization temperature was identified as 1150°C since all the secondary phases
except MX will dissolve at this temperature based on the predicted phase fractions.
The homogenization time was chosen to be 1 h because a longer time period can
lead to grain growth at high temperatures. Hence, the homogenization for the graded
alloy builds was performed at 1150°C for 1 h followed by water quenching.

The aging temperature of 760°C was found to be suitable because at that temper-
ature the fraction of MX in 60% P91 alloy and the fractions of M23C6 as well as MX
phases in 85% P91 alloy were found to be maximum based on the thermodynamic
predictions. In addition, 760°C was identified as the optimum aging temperature for
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Fig. 7 Fraction of phases as a function of temperature predicted using thermodynamic calculations
for a 60% and b 85% P91 graded alloys

P91 steel [21] and 740H superalloy [22] and moreover, different aging temperatures
cannot be used for a multi-material build, as mentioned previously. In order to iden-
tify the optimum aging time, the samples were subjected to aging heat treatment
after homogenization for different times at 760°C followed by air cooling. The time
durations for aging were identified as 2, 4, 8, and 12 h because the optimum aging
time for P91 steel [21] and 740H superalloy [22] are 2 and 12 h, respectively. Two
time periods were chosen in between (4 and 8 h) in order to identify the optimal
condition.

In order to identify the optimum aging time, the peak hardness needs to be deter-
mined. The hardnessmaps obtained for different aging times at 760°C for 60 and 85%
P91 graded alloy builds are shown in Figs. 8 and 9, respectively. The hardness maps
for aged 60% P91 builds showed no improvement in hardness after aging (Fig. 8).
This observation agreeswell with theCALPHADcalculationswhich predicted a lack
of strengthening precipitates at 760°C. This proves that there is a good correlation
between the CALPHAD predictions and experimental observations. On the contrary,
the hardness of the 85% P91 graded alloy sample improved significantly after aging
as shown in Fig. 9. The width of the soft zone, which is a mixture of martensite
and γ phases (Fig. 6f), was found to be unchanged after 2 h of aging while reduced
slightly after aging for 4 h. After aging for 8 and 12 h, the soft zone width reduced
considerably showing that a longer aging time is required to allow the diffusion.
However, as the aging time is increased, the pure P91 steel becomes weaker with
low hardness since it has reached an overaged condition. Thus, the optimum aging
time was identified as 8 h at 760°C to attain reduced width of the soft zone without
lowering the hardness of pure P91 steel extensively.

The stress–strain curves and the tensile properties obtained after mechanical
testing equipped with DIC are shown in Fig. 10 and Table 3, respectively. No signifi-
cant improvement was observed in the yield strength and ultimate tensile strength of
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Fig. 8 Hardness maps for 60% P91 graded alloy after aging at 760°C for different durations. The
length and width of the hardness maps are 50 and 4 mm, respectively. The color bar corresponds to
the hardness in HV0.3

the heat treated 60% P91 graded alloy builds. However, the ductility of the as-built
alloy is higher than the heat treated 60% P91 graded alloy possibly due to the precipi-
tation of the fine and brittleMCcarbides during agingwhich can act as crack initiation
sites. On the other hand, there is a considerable improvement in the yield strength
and ductility of 85% P91 graded alloy build after post-heat treatment (Table 3). The
precipitation of M23C6 precipitates could have contributed to the strengthening of
the graded alloy and hence, enhanced tensile properties has been achieved.

In addition, DIC was used to calculate the strains during the mechanical testing to
identify the region where the necking starts. The locations of failure (region enclosed
by a white rectangle) identified from screenshots of the strain map are shown in
Fig. 11. The 60%P91 graded alloy failed in the graded alloy block in as-built and heat
treated conditions since the strength did not improvewith the application of post-heat
treatment (Fig. 11a and b). However, the location of failure changed with application
of post-heat treatment for the 85% P91 graded alloy. In the as-built condition, the
sample failed at the interface between the 85% P91 alloy and 740H superalloy as
shown in Fig. 11(c) since the hardness in this region was low due to the presence
of a two-phase region with martensite and γ phases. After post-heat treatment, the
location of failure shifted to the pure P91 block (Fig. 11(d)). The failure in the pure
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Fig. 9 Hardness maps for 85% P91 graded alloy after aging at 760°C for different durations. The
length and width of the hardness maps are 50 and 4 mm, respectively. The color bar corresponds to
the hardness in HV0.3

P91 region is inevitable since it would have reached an overaged condition as the
optimum aging time for this material is 2 h [21]. Therefore, the designed post-heat
treatment for the 85% P91 graded alloy has strengthened the material to achieve
improved mechanical performance.

Conclusions

ACALPHAD-based ICME framework has been employed to design the composition
of the graded alloy that can potentially act as an interlayer between P91 steel and
740H superalloy. The designed compositions were fabricated using WAAM along
with microstructure characterization and mechanical property testing. The salient
outcomes from the present study can be summarized as follows.

• Guided by the high-throughput calculations, the bimetallic alloy builds with 60
and 85%P91 as interlayers were fabricated successfully with desired composition
and reduced dilution using WAAM.
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Fig. 10 Stress–Strain curves obtained using mechanical testing equipped with DIC for 60 and 85%
P91 graded alloys builds in as-built and heat treated conditions

Table 3 Tensile properties and failure locations for 60 and 85%P91 builds fabricated usingWAAM
in different conditions (2 sampleswere tested for each condition to determine the standard deviation)

Material Condition Yield strength
(MPa)

Ultimate tensile
strength (MPa)

Elongation (%) Location of
failure

60% P91 As-built 219 ± 2 459 ± 11 32.5 ± 9.9 60% P91 block

Heat treated 212 ± 2 440 ± 14 21.2 ± 3.1 60% P91 block

85% P91 As-built 419 ± 5 665 ± 18 6.5 ± 1.2 Interface
between 85%
P91 and 740H
blocks

Heat treated 538 ± 22 667 ± 6 13.2 ± 0.1 P91 block

• The matrix of 60% P91 alloy had a coarse-grained FCC structure, while the 85%
P91 alloy comprises a fine-grained martensitic matrix and secondary phases such
as the Laves phase and MC carbides. There is a good correlation between the
predicted phases and the observed microstructure in the WAAM builds.

• The hardness of 60% P91 graded alloy is much lower than the 85% P91 alloy.
Moreover, the interface between the 85% P91 alloy and 740H superalloy is low
due to the presence of a two-phase mixture of martensite and γ phases, while the
fine martensitic structure of the P91 steel close to the interface between P91 steel
and 60% P91 alloy increased its hardness.
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Fig. 11 Location of failure
identified using the DIC
strain maps for a, b 60% and
c, d 85% P91 graded alloy
builds in as-built and heat
treated conditions. The color
bar corresponds to the strain
in %

• 60%P91 graded alloy showed no improvement in the hardness even after applying
the post-heat treatment due to lack of effective strengthening precipitates, while
85% P91 graded alloy showed considerable improvement in the hardness after
aging with an optimum aging time of 8 h.

• The location of failure for the 60% P91 graded alloy remained within the graded
alloy block in as-built and heat treated conditions whereas the as-built 85% P91
graded alloy build failed at the interface between the intermediate block and 740H
superalloy interface and it shifted to the pure P91 after the post-heat treatment.

• This work demonstrated that the CALPHAD-based ICME design frame is essen-
tial for the successful bimetallic printing using the WAAM combined with
post-heat treatment.
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